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1. Introduction

We describe numerical techniques for solving the problem of scattering
by an edged cylinder. Both the E-wave (electric field being parallel to the
axis of the cylinder) and the H-wave (magnetic field parallel) incidences
are considered. We apply the Yasuura method or the mode-matching method
(MMM) [1-6] to the problem. A singular-smoothing procedure (SSP) [5,6] is
employed to find a rapidly converging sequence of approximate solutions for
the E-wave incidence. A combination of a smoothing procedure (SP) [3,4]
and the SSP is utilized for the H-wave case. Numerical examples for a
square cylinder show the effectiveness of the techniques.

2. Formulation

We consider the problem to find a wave-function ¥(P) satisfying the two-
dimensional Helmholtz equation outside an edged contour C (Fig. 1), the
radiation condition, and the Dirichlet or the Neumann boundary condition on
the contour. The Dirichlet condition applies for the E-wave case:

Y(s) = £(s) = -Epi(s) (0<gs<l); (1
and the Neumann condition is for the H-wave case:
Bu¥(s) = g(s) = -dH1(s) (0<s<1) (2)

where 3y, denotes the normal derivative.
3. Method of solution: E-wave case

Let us define an approximate solution by

N

Y(®) = I A (Mo (P) (3)
where ¢p(P) (m=0, #1, +2,...) are modal functions given by

¢p(P) = Hp(kp)exp(imd) (4)

with Hp being the second type Hankel functions. Since the approximate
solution satisfies the Helmholtz equation and the radiation condition, the
Ap—coefficients should be determined so that the solution approximately
satisfies the boundary conditionm.

Minimizing the norm® ||¥y-f||, we can find an approximate solution. (a
conventional MMM [1,2]) It is verified that the sequence of approximate
solutions by this method converges to the true solution as the number of
truncation tends to infinity. The sequence however converges often so
slowly that we cannot find a precise solution.

The SSP accelerates the convergence of E-wave solutions. The algorithm
of the MMM with the SP is as follows.

First we define the functions+

Ym(s) = ¢m(s) - (L,dpm)d (5)/(1’¢U) m¥k (5)

h(s) = £(s) = (L,Dy(s)/ (1,0, (6)
where ¢u(s) is an element which is not orthogonal to constants: (l,¢u)¥0.
We make an approximate function for the h(s) in terms of a linear combi-
nation of the ¥ -functions:

hy(s) = I 1 o an(Mig(s) )
+ (9,0) = L:¢*(s)w(s) ds, ||o]] = (4,172,
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where ' means a summation excluding m=u. The functions Ym(s), h(s), and
hy(s) are orthogonal to constants: (1,¥p)=0, etc. It is worth noting that
the approximation "h(s)shy(s)" is equivalent to "f(s)5¥Yyn(s) under the
constraint that (1,£)=(1,¥y)"; the relationship between the ay- and the Ap-
coefficients is that

A = -[28 (1,608 (0 + 1,01/L,8)
Ap(W) = ap(N) (m¥uy) (8)

Next we ?efine an operator of the SSP by
Hy(s) = [ H(s,0)U(t) dt, H(s,t) = u(s-t) - u(E-t) (9)
The function HY(s) is an indefinite integral of y(s) having a zero at s=E£:
dHY(s)/ds = Y(s), HY(E) =0 (10)

The operator H is needed because of the singularity due to the edge point.

We determine the aj-coefficients so that the norm

Qy = | E(hy-h)/(s-8)] |2 (11)
becomes minimum. And the Ap-coefficients are found by (8). We can prove
that the sequence obtained by the method above converges to the true
solution uniformly in any closed subdomain in the exterior infinite domain.

In actual numerical computations we should devide the interval [0,1]
into J=2(2N+l) subsections and discretize the least-squares problem. A
recommended way to solve the discretized problem is the QR algorithm. [7]
This is the reason why we have introduced the Y, -functions: we cannot
employ the algorithm so long as we try to find the Ap-cocefficients directly.

4., Method of solution: H-wave case

In this polarization, the SP accelerates the convergence to a certain
degree. However a combination of the SP and the SSP is superior to the SP
because of the rapid convergence and a wide range of applicability.

The Yp-functions, etc. are defined by

Um(s) = dydm(s) = (1,3ybp) dydp(s)/(1,3y0,) m¥A (12)
h(s) = g(f») - (1,g)9yda(s) /(1,3ydy) (13)
hy(s) = 2N a_(Dy_(s) (14)

where A is an integer such that (1,3v¢A)¥O, and L' denotes a summation
excluding m=A. The relationship between the ap- and the Aj-coefficients
is given by (8).

We determine the ap-coefficients so as to minimize the norm

Qy = | [ER(hy-h)/(s-8) | |2 (15)
Here, K den?tes an operator of the SP which is defined by
Ky(s) = fo K(s,t)¥(t) dt, K(s,t) = u(s-t) - (s-t) -1/2 (16)

This operator transforms a function into an indefinite integral of a
component of the original function being orthogonal to constants:

dKy(s)/ds = Yu(s) = Y(s) - (1,¥) (17)
And the Ky(s) again is orthogonal to constants: (1,Ky)=0.

We can prove the convergence theorem for this case. Discretization and
numerical analysis should be made in the same way as in Section 3.

5. Application to scattering by a square cylinder

We analyse the problem of plane-wave scattering by a perfectly conducting
square cylinder shown in Figure 2.

The cylinder has geometrical symmetry on rotation through about the z-
axis, and hence the polyphase wave functions[8] can be employed to save much
numerical computation.

Figures 3 and 4 show the decrement of error on the optical theorem (i.e.,
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energy error). We can easily find precise solutions with errors less than
0.1% for a wide range in the resonance region. Figure 5 illustrates an
example of scattering pattern. The backscattering cross section for the
H-wave incidence is shown in Figure 6 as function of the wavenumber.

6. Concluding remarks

We described a method of solution for the problem of scattering by an
edged cylinder. The method was applied to the problem of a square cylinder
and the numerical results demonstrate the effectiveness of the method.

It should be noted that the number of divisions was decided by J=2(2N+1).
We can verify numerically that the choice is resonable by singular value
analysis. [9]
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Fig. 1. The cross section of an edged cylinder. Fig. 2. The cross
The length of C is normalized to be unity. The section of a square
edge point locates at s=E. cylinder for sample
calculation.
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Figs. 3(left) and 4(right). Decrement of the error on the optical
theorem as the number of truncation increases. 8 = 45°.

Fig. 5. A sample of scattering pat
ka = 47, 81 = 45°, —>p

tern.

Fig. 6. Backscattering cross section

for some incidence angles. H-wave.
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