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Abstract

This paper presents the Uniform Theory of Diffraction (UTD)
analysis of an inclined rectangular aperture antenna mounted
on an open-ended cavity excited by a probe. This work is
taken into account the uniform theory of diffraction to
improve the results from the previous works by using the
dyadic Green function approach. The geometry of the
problem is made up of the rectangular aperture mounted on
inclined open-ended cavity. This structure is fed by a probe
inside the cavity. The study starts with the consideration of
the geometry of the diffraction such as the incident field, the
shadow  boundaries and the relative parameters.
Subsequently, the diffracted fields and the total fields that
radiated from the antenna are evaluated to precise the
radiation pattern from the aperture antenna. The results in
this work are significant to further design the aperture
antenna from the open-ended cavity fed by probe in the
microwave and the wireless communication applications.

1. INTRODUCTION

At presently, there are many researches for the antenna
development in order to improve the performance of the
antenna to meet the demand of the microwave and wireless
communication systems. In this paper, the antenna is the
rectangular aperture mounted on an inclined open-ended
cavity with the probe fed inside the cavity. This work is
continued from the works in [1-4] to improve the results from
the previous ones. In the previous work, the antenna is
simulated by using the Numerical Electromagnetic Code
(NEC) [1] whose the results are not flexible for the parametric
study. Therefore, the analysis of this antenna with the normal
aperture [2-3] and the inclined aperture [4] is performed using
the dyadic Green function approach, respectively. To precise
the result in those works, the diffraction on a rectangular
aperture antenna mounted on an open-ended cavity excited by
a probe is investigated in this paper, in case of the inclined
aperture. The diffraction theory used in paper is the two-
dimensional Uniform Theory of Diffraction (UTD) and the
geometry of the problem is illustrated in Fig.1. It is made up
of the rectangular aperture mounted on one side of the cavity
and inclined it. The other walls of the cavity are perfect

electric conductor that is the same as the normal aperture in
[2-3]. The differences between them are the dimension of the
cross section of the aperture and the origin of xyz coordinates
at the middle of aperture.

» =

Fig. 1: An inclined rectangular aperture antenna fed by probe

Fig. 1 illustrates the configuration of the inclined open-ended
cavity used for this work, where a and b parameters are the
dimension of the aperture cross section with the length of the
cavity ¢, the length of the probe / located at (s, 0, p) with the
width of the probe w.

In the analysis of the inclined rectangular aperture from open-
ended cavity, the principle of the rotation of axis is used to
solve the problem. The procedure of the analysis for the
inclined rectangular aperture is discussed in more detail in

[4].
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(c) Two-dimensional view for YZ-plane

Fig. 2: Diffraction on the antenna structure

2. GEOMETRY OF THE DIFFRACTION ANALYSIS

In order to analyze the problem using the two-dimensional
UTD diffraction, the shadow boundaries and relative
parameters are considered first. From the geometry of the
problem in the fig.1 and consider in the xYZ coordinates. It
can be defined the shadow boundaries and incident field that
radiated from the inclined rectangular aperture antenna

excited by a probe inside the open-ended cavity as shown in
fig. 2. From fig. 2(a), it illustrates the diffracted ray on the
structure of an antenna at Q,. The angle of the incident ray at
the edge (4/) and the angle of the diffracted ray at the edge
(p') are identical that equal to z/2 . At the other point, the 87

and f) are similar at Q;.
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For fig. 2 (b) and (c), the two-dimensional view of the
antenna in xZ-plane and YZ —plane are shown with diffracted
ray, shadow boundaries and relative parameters. In each of
the both plane, there are two diffracted points with the angle
of the incident ray ( ¢': measured in a plane perpendicular to
the edge) is zero.

In the xZ-plane, the both of interior angle (y, andy,) equal
torz/2, thus n equals to 1.5 and the angles of the diffracted
ray (¢) are in range0<q <3z/2. But in the YZ-plane, the
(y,andy,) which
7, =0+(x/2)andy, =d—(7/2), the n-
parameters equal to 1.5 - (®/n) and 1.5 + (D/n), respectively.
For the angles of the diffracted ray, «; are in range
0<a, <(x/2)+®and oy are in range 0<q, <27-®. The

summary of the various angles and value of » in the geometry
of the diffraction on the structure of the antenna are listed in
Table 1

interior  angle are not equal

therefore,

TABLE 1: SUMMARY OF THE VARIOUS ANGLES AND VALUE OF N

in which N is the integer, in this case, it is defined as zero
(N=0).

For the function F[x] is called as the transition function, it is
can be defined as

F(x)= 2j\/;e~i" f e du.
Jx
Note that the integral part of the transition function resembles
a Fresnel integral. The transition function, function a(«)
and their relative parameters are discussed in more detail in
[5].

Therefore, the diffracted field can be written as

“4)

Ea(s) = E«0Q,) DA(s)e™™, (5)

where E (0,)is the incident field at the diffracted point @,

on the edge, D is the diffraction coefficient, for this case, can
be given in eq.1-2 and A(s) is the spreading factor, can be
classified as

A(s) =

Parameters Diffracted ray point
0 0, 05 Q4

Bo /2 /2 2 /2

o /2 2 2 2

o’ 0 0 0 0

a 0to 32 0to 372 0to (72)+@ 0to 2@
4 2 2 DH(/2) D-(7'2)
n 1.5 1.5 1.5 - (®/n) 1.5+ (®/n)

—_ < —_
©

JJssin g

’

for plane and conical
wave incidence

for cylindrical wave incidence

Then, the two-dimensional UTD diffraction coefficients will
be considered, for the structure in fig. 2, they can be written
as

D (L,a,n)=0 ey

D,(L,a,n)=

e FlkLa(a)] [
n\2rk

2sin(z/ n) ]

cos(z/n)—cos(a/n)

@

where p and p, are the soft and hard two-dimensional
UTD diffraction coefficients, respectively, and L is the
distance parameter, can be determined for several types of
illumination as

ssin’ B, for plane wave incidence
/
A . . . .
- for cylindrical wave incidence
L=y s+s
s'ssin® 4, for conical and spherical wave
1o incidence.

The definition of function a(«) can be written as

a(a)= 2COSZ(WJ, (3)

s
s(s+s")

for spherical wave incidence.

3. RADIATED FIELD FROM THE APERTURE

Once the shadow boundaries are known, the related
parameters and the two-dimensional UTD diffraction
coefficients are determined. Therefore, the diffracted fields
and the total field can be evaluated in this section.

A. xZ plane P(”79r’¢r =0)

In the view of symmetrical structure in this plane, the fields
can be considered only in the region0 <@ <. From fig.2
(b), there are two diffracted points that are Q; and Q,. The
diffracted angles at both of two diffracted points (¢, and er, )

can be expressed in ¢ term as

o =210, (6)
2

o, =20 ()
2
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Therefore, the diffracted fields can be considered as follows

-The diffracted field at Q,
The diffracted field at Q; can be expressed as

Edl (g’) = Ei(Q])%yal)A(S)e’/kﬁ . (8)

It is found that the diffraction coefficient is divided by two
because ¢’ =0 in this case, so-called grazing incidence, the
diffraction coefficients are divided by two.

- The diffracted field at Q,
The diffracted field at O, can be expressed as

D,(L,a,)

5 A(s)e™ ™ - ©

E;,(0)=E(Q,)

-The second-order diffracted field at Q,

In fact, there is discontinuity in the pattern atg =z/2, the
transition at the shadow boundary. To solve this problem, the
high-order diffraction terms are included. Therefore, in this
case, the second-order diffracted term is necessary to solve
this problem. The second-order diffracted field that emanates
from Q; due to illumination from £, can be expressed as

D,(L,a;,) e .

2 N2

Elz(gr) =E;(Q) (10)

-The incident field E;; at Q;

The incident field £, at Q;can be expressed as

D, (Lo, =0) e

2 Ja

-The total field at an observation point

E,(0)=E(Q,) (11

The total field at an observation point then becomes

for 0<0 <7/2

Ei +Ed] +Ed2+Ed12
- for z/2<6 <7,

E, +E

d12

(12)

where E; is the field that radiated from the inclined aperture
antenna at an observation point P(r,4.,4 =0), can be written
as

e

Jr

0 for 9 >7/2,

for 9 <z/2

E(0)- E,6) (13)

and Eap(g) is the radiated field from the inclined rectangular

aperture mounted on one side of the cavity [4].

The value of the parameters from eq.8-12 can be listed in
table 2.

TABLE 2 : SUMMARY OF PARAMETERS IN EQUATION 8-12
FOR XZ-PLANE

Parameters
Diffracted field As) | L a(a)
A. The diffracted field at ), 1/AF |al2| 1-sing
B. The diffracted field at (), U~ |a/2| 1+sin@

C. The second-order
diffracted field at Q1

D. The incident field
EdZ at Ql

a 1-sind

al3 2

Note: assume that the incident wave as the cylindrical wave
and the incident fields are given by

— jk(al2)

e

E(Q)=E(Q)=E, (0)— (14)
(Q)=E(Q,)=E,(6,) —

B. YZ-plane P(r,0.,¢ =7/2)
From fig.2 (c), there are two diffracted points that are Q; and
Q,. The structure of the antenna in this plane is not symmetry
and the interior angles of the wedge at Q3 and Q, are not
identical. Therefore, the fields are considered in all of the
ranges (0< 6, <27).
The diffracted angles at both of two diffracted points (s
anday) can be expressed in @ term as

-At O
The diffracted angle ¢ is defined in two ranges as

Range 1: 0<6, <7-@

w="1g (15)
2
Range 2: 37/2<0, <27
o =0 -3 (16)
2
-At Oy
The diffracted angle oy is defined in two ranges as
Range 1: 0<g <x/2
0" (17)
2
Range2: z-d<0. <27
a, =% g, (18)
2

Therefore, the diffracted fields can be considered as follows
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-The diffracted field at Q;
The diffracted field at Q; can be expressed as

D,(L,a,)

E,.(0,)=E(0) A(s)e s 19)

where =+ are represented for the range 1 and 2 at Qs
respectively.

-The diffracted field at Q,
The diffracted field at O, can be expressed as

Ed4, @)= E,(QQMA(S)EM ) (20)

where t are represented for the range 1 and 2 at Q,
respectively.

-The second-order diffracted field at Q;
The second-order diffracted field at Q; can be expressed as

Dy(La,) e

2 B4

Edui (01) = Ez/4 (Qz) (21)

where = are represented for the range 1 and 2 at Qj,
respectively and a,. =a..

-The incident field E 4 at Qs
The incident field £, at Qs can be expressed as

D,(L,a,=0) e .

2 N

E,(0)=E(0,) (22)

- The second-order diffracted field at Q,
The second-order diffracted field at Q, can be expressed as

D(La,) e
2

E,.(0)=ELQ,) (23)

T3

where =+ are represented for the range 1 and 2 at Q,
respectively and A = -

-The incident field E 5 at Q,
The incident field E; at O, can be expressed as

D,(Lia;=0) e’

(24)
2 N

E;(Q,) = E(Qy)

-The total field at an observation point
The total field at an observation point then becomes

Ei+Ed3++EM +Ed34+ +EM+ for 0<6 <7z/2
B+ By for z/2<0 <z-®
By +E for - <0 <37/2

E, +Ed3’ +Ed4’ +Ed34’ +Ed43’ for 37/2< 6 <2r.

t

(25)

The value of the parameters from eq.19-25 can be listed in
table 3.

TABLE 3: SUMMARY OF PARAMETERS IN EQUATION 19-25
FOR YZ-PLANE

Parameters
Diffracted field A(s) L a(a)
- The diffracted field at Q; 1/\/; b'/2| 1-sin 0,
(in both of range 1 and 2 )
- The diffracted field at Qy 1/\/; b2 1+siné,

(in both of range 1 and 2 )

- The second-order b
diffracted field at Q;

(in both of range 1 and 2 )

- The incident field Eu at Qs

(in both of range 1 and 2 )

- The second-order b
diffracted field at Qy

(in both of range 1 and 2 )

- The incident field Ez; at Q4

(in both of range 1 and 2 )

1-siné,

b'/3 2

1+siné,

b'/3 2

Note : assume that the incident wave as the cylindrical wave
and the incident fields are given by

—jk(b12
e./( )

N

Finally, the relations for the various angles that used to
transform the far field £(6, ¢) — E (6,¢) can be written as
For yz plane

(26)

E(Q)= Ei(Q4) = Eap(gr)

0,=0-® and 4 —y-". 27
" 2
For xz plane
0.=0 and ¢ =¢=0. (28)

4. RADIATION PATTERN

In this section, the comparison of the radiation pattern
calculated using only dyadic Green function approach and
using the dyadic Green function approach together with the
diffraction theory is performed. To improve the results from
the previous works [1-4], therefore, the radiated fields from
the rectangular aperture mounted on the cavity in those works
are taken as the incident fields in this research. By following
the procedure in the previous work and using the diffraction
theory in this work, the radiation pattern is obtained in fig.3.
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Fig. 3: Radiation patterns from the normal (0°) and inclined (30°) rectangular apertures by using the dyadic Green function approach and diffraction theory
with a= 0.74, b=0.354, c= 0.754, I= 0.252, p=0.252, s= 0.354 and w=0.0151

From fig.3, it is found that the radiation pattern which is
calculated using only dyadic Green function approach and
using the dyadic Green function approach together with the
diffraction theory are similar, both xz and yz plane. However,
the amplitudes of the fields are different, especially in the
back lobe radiation because the total field in this boundary is
only the diffracted field, thus the level of the field in the back
lobe is lower. Moreover, it is found that the maximum field is
at the angle of O for the radiation pattern in yz-plane, because
the configuration in this plane is inclined. On the other hand,
the maximum field is at the angle of 0° for the radiation
pattern in xz-plane. It is noted that the radiation pattern in yz-
plane for case of inclined (30°) aperture is discontinuous at
6 = because the two diffracted point in Fig.2(c) is on the
wedge whose the interior angle (y) is not identical. To solve
this problem, the third-order diffraction terms or higher are
included. So, it can use the theory of the three-dimensional
diffraction to analyze this problem.

5. CONCLUSIONS

This paper presents the UTD analysis of an inclined
rectangular aperture antenna mounted on an open-ended
cavity excited by a probe. This work is continued from the
parametric studies of the normal and the inclined rectangular
apertures from the open-ended cavity fed by a probe using the
dyadic Green function approach to improve the results by
using the uniform theory of diffraction from those previous
works. The geometry of the problem is made up of the
rectangular aperture mounted on of the open-ended cavity and
inclined it with the probe fed inside the cavity. The study
starts with the consideration of the geometry of the diffraction
such as the incident field, the shadow boundaries and the
relative parameters. Then, the diffracted fields and the total
field that radiated from the antenna are evaluated to precise
the radiation pattern from the aperture antenna. The results in

this work are significant to further design the aperture antenna
from the open-ended cavity fed by probe in the microwave
and the wireless communication applications.
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