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Abstract— In this paper a new method for the solution of parabolic
equation in troposphere will be presented.Electromagnetic field will be
expanded by proper expansion functions. These expansion functions
satisfy the parabolic equation in homogeneous media and by means of
least square method, the expansion coefficients will be derived for initial
and boundary conditions. The least square functionals satisfy the initial
coefficient directly and by means of Lagrange multipliers the boundary
condition will be exerted. This method is more reliable than the split step
method and can be applied over rough impedance boundary in a simple
manner. In comparison with the finite difference method, the proposed
method is very fast.

I. INTRODUCTION

Recent advances in planning and implementation of wireless
radio communication systems and the sensivity of these systems
to interference and multipath phenomena, require efficient usage
of frequency spectrum. Therefore, before planning these systems,
their internal and mutual interference effects on other radio systems
and the effect of multipath on the radio system must be accurately
determined. Field strength due to each system must be calculated.
Therefore, one of the radio wave propagation models must be used.
These models fall into empirical, semi-empirical and theoretical
models. Empirical and semi-empirical models are based on field
trials in various geographical areas.Theorotical models are based on
approximate solution of Maxwell equations.[1]
In addition to surface roughness, a suitable model must take the effect
of refractive index of troposphere into account. Advection, subsidence
and frontal produce stratification of troposphere and change the radius
of ray. Time variations of refractive index create large variations of
amplitudes of field. Atmospheric duct decreases the propagation loss
and causes inter-service interference[2]. The majority of empirical
and semi-empirical models neglect the effect of refractive index on
the field strength. Some of these models only consider the effect of
simple refractive index profiles(linear or exponential). Therefore, the
error of field strength computation by these models for large variation
of refractive index profile is high and their reliability is very low[1].
Theoretical models are divided into models based on ray theory
and modal theory. In the ray theory based models, at first the
propagating ray is identified (for example direct ray, reflected ray
, diffracted ray and ...) and then by tracing each ray the field
strange is calculated. Qualitative prediction can be made by this
model. However, near caustics (for example atmospheric duct) this
model fails and loses its accuracy[3]. Also , mistake in classification
of rays causes error in prediction. For example, neglecting lateral
waves in forest environment for transmitters and receivers located
inside forests, causes large errors in the prediction of radio wave
propagation[4]. In the modal based methods, by modal expansion
of fields, and considering their orthogonality, the amplitude of each
mode is calculated. Computation of modes in media with irregular
refractive index is a cumbersome task. Also the convergence rate
of modal method is very slow. Therefore, the computation cost is
excessive. In practice a method composed of the two aforementioned
methods is used.
Recently, marching algorithm was used for the analysis of radio wave

propagation problem[11-13]. In comparison with other scattering
problems, the domain of radio wave propagation problem is very
large. Therefore, their numerical computation requires excessive
computer memory. In the marching algorithm , at first the problem is
solved in smaller sub-domains, required data is saved and excess data
is discarded. This method makes possible the optimum use of memory
resources.The majority of marching algorithms are devised for the
parabolic approximation of wave equation whereby the backward
propagated field is neglected and parabolic equation(PE) for forward
field is extracted.
Finite difference(FD) and split step(SS) method have been used for
the solution of PEM in the troposphere[3]. In the finite difference
method, the derivatives of parabolic equation are replaced by ap-
propriate difference equations and the partial differential equation is
changed into a matrix equation. In the split step method, at first the
effect of refractive index is separated from the effect of surfaces.
The effect of refractive index is implemented by proper phase shift
of field in homogeneous media.
In this paper, based on the least square method a marching algorithm
for modeling of radio wave propagation in the troposphere will
be presented. This algorithm is quite reliable for the radio wave
propagation problem in the troposphere with various profiles of
refractive index.
It the second section of the paper, the problem is formulated and in
the third and fourth sections of paper, based on formulas presented
in the second section, least square functionals will be constructed.
By minimization of these of this functionals, the field in troposphere
will be calculated. Finally the results of this paper are compared with
those of other methods.

II. PROBLEM FORMULATION

Radio wave propagation modeling requires the solution of wave
equation with proper boundary conditions.
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where the field is considered y independent,k andn are propagation
constant and refractive index respectively,' is either Ey or Hy

depending on polarization. We defineu as follows[13].

u(x; z) = '(x; z)e�jkx (2)

By substituting (2) in (1) and some approximation a partial differen-
tial equation for u can be extracted.
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Conductivity and dielectric constant of surface determine the appro-
priate boundary conditions. For a conductive earth, Dirichlet(u(x; 0))
and or Neumann boundary condition(@u(x;0)

@z
), depending on po-

larization must be satisfied. However, conductivity and dielectric
index of earth have finite values depending on geographical region.
Therefore, Neumann and Dirichlet boundary conditions cause errors
in the propagation modeling(especially at low frequencies). For this
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case, the field inside the earth must be calculated and the continuity
condition of field components must be satisfied. This increases of
computations.
For decreasing computations, approximate impedance boundary con-
dition has been proposed whereby only the field inside the domain
of interest is calculated. Several impedance boundary conditions have
been proposed. Their accuracy depend on their complexity.
Leontovich impedance boundary condition is the simplest in which
the tangential component of electrical field is considered proportional
to the tangential component of magnetic field.

@u

@z
+ �u = 0 (4)

Proportionally factor is computed by considering the plane wave
reflection from earth. Although this condition is a simple, it has good
accuracy and has been used in several of radio wave propagation
problems. For example at for radio wave propagation over random
surfaces (for example sea surface) , by considering an effective height
of surface, an appropriate proportionally factor is computed and the
problem of wave propagation over rough surface reduces to wave
propagation over lossy earth.
In this paper, similar to the split step method, the effect of refractive
index and boundary condition are considered separately. At first the
problem for the homogeneous media(n = 1) is solved.
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u(0; z) = f(z) (5)
@u(x; 0)

@z
+ �u(x; 0) = 0

Then by multiplying the computed field bye�jk
n2�1

2 , the effect of
troposphere is applied.
We truncate the upper height of problem domain at fixed finite
height(z = h). For u we consider the following solution:

u(x; z) =

1X
m=�1
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h
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This equation satisfies the parabolic equation in homogeneous media.
In order to satisfy initial and boundary conditions the coefficientsa�m
must be determined appropriately.
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III. C ONSTRUCTION OF LEAST SQUARE FUNCTIONAL

With due attention to satisfaction of the parabolic equation by
expansion functions, the least square functional must be constructed
in such a manner to satisfy initial and boundary conditions. Similar
to other solution methods of parabolic equation , its solution in a
finite interval is considered. The least square functional is constructed
directly for the initial conditions and by means of language multiplier
for boundary conditions.
By defining the inner product and norm as

hv; wi =
1

h

Z h

0

vw�dz (9)

kvk2 = hv; vi

The least square functional can be written as follows

F = ku(0; z)� f(z)k2 +Re
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where(xn; 0) shows the sampling point on the earth surface ,�n are
Lagrange multipliers andRe stands for real part of function.
By some mathematical manipulation, the functional can be written
as
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IV. FUNCTIONAL MATRIX FORMULATION

Matrix formulation of the functional facilitates its mathematical
manipulation. At first, we truncate the infinite summations
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Therefore, we can approximate the functional as follow
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We define following matrices

a = [a�M ; a�M+1; :::; aM�1]
T (14)

f = [f�M ; f�M+1; :::; fM�1]
T (15)

sn = [sn;�M ; sn;�M+1; :::; sn;M�1]
T (16)

� = [�0; �1; :::; �n]
T (17)
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Also matrix S is defined as

S = [s0; s1; :::; sN�1] (19)

Therefore we can write the functional in a closed form

F = aHa� fHa� aHf +Re
�
aHS�

�
+ kf(z)k2 (20)

V. FUNCTIONAL MINIMIZATION

Minimization of functional requires that its gradient become
zero[14].

rF =
@F

@aH
= a� f + S� = 0 (21)

Thereforea can be evaluated as follow

a = f � S� (22)

For finding the Lagrange multipliers, we exert the boundary condi-
tion.

aHS = 0 (23)

Therefore Lagrange multipliers can be found as follows

� =
�
SHS

�
�1 �

SHf
�

(24)
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Fig. 1. Comparison of results of LS algorithm with Split Step method for
horizontal polarization. split step results have 20dB offset for clarity
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Fig. 2. Comparison of results of LS algorithm with Split Step method for
vertical polarization. split step results have 20dB offset for clarity

VI. N UMERICAL RESULTS

To investigate the efficacy of proposed algorithm, we apply it
to several boundary conditions and compare the results with other
methods. Also we investigate the effect of number of sampling points
on the accuracy of results. FFT algorithm is used for calculatingf
anda.
Fig.1 compares the propagation loss for horizontal polarization com-
puted by the proposed algorithm with propagation loss computed
with split step method. It is seen that the results exactly coincide.
Fig.2 shows similar results for vertical polarization. Fig.3 and Fig.4
compare the propagation loss over earth with real� by results of
finite difference method. It is seen that the results agree for both�

Fig.6 and Fig.7 show the propagation loss in the presence of terrain
up-ward and down-ward steps, as shown in the Fig.5. It is seen that
the results of least square method for both up-ward and down-ward
steps agree with the results of split step method.

Fig.8 and Fig.9 show the effect of sampling number on the
propagation loss. It is observed that the increase of the sampling
number reduces the error in propagation loss. However, excessive
increase of the sampling number causes ill-conditioning of

�
SHS

�
at (25). This ill-conditioning causes error of the calculation of
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Fig. 3. Comparison of results of LS algorithm with Finite Difference method
for � = 1.

10
0

10
1

10
2

10
3

10
4

20

40

60

80

100

120

140

160

Range(m)

Lo
ss

(d
B

)

Computed by FD

Computed by LS

α=10 

h
t
=h

r
=10

f=1GHz  
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Fig. 5. Geometry of (a)Up-ward and (b) Down-ward Steps.
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Fig. 6. Propagation loss in the presence of up-ward step

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

60

70

80

90

100

110

120

130

Range(m)		

Lo
ss

(d
B

)

h
t
=h

r
=10

h=5 m
F=1GHz 

 ° : SSPE Results
    −   : Least Square Results

Fig. 7. Propagation loss in the presence of down-ward step

propagation loss and instability of the algorithm. For example fig.9
shows that ill-conditioning produces minus propagation loss which
is not acceptable.

Further investigations show that maximum sampling number
depends on the number of terms in (14). By increasing the terms,
maximum allowable sampling number also increases.
Also author’s simulation experiments show that maximum and
minimum number of sampling points depend on height and range
resolution. Increasing range resolution increases the required
minimum number of sampling points in order to achieve the
acceptable accuracy. Decreasing height resolution increases the
maximum allowable sampling points in order to prevent ill-
conditioning.
Therefore, the computation time depends on the range and height
resolution. The computation time of algorithm is larger than split
step computation time and less than finite difference method.

VII. CONCLUSION

In this paper a new method for the solution of parabolic equation
in the troposphere over lossy earth is presented. It is seen that the
results of Least Square Method exactly agree with those of other
methods for the solution of parabolic equation. Also FFT algorithm
can be used for the reduction of computation time. Various boundary
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Fig. 8. The effect of number of sampling points on the accuracy of
propagation loss.
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Fig. 9. The effect of excess number of sampling points on the ill-conditioning
of algorithm

conditions can be applied with Lagrange multipliers. Therefore, the
algorithm is flexible. However, for preventing ill-conditioning of the
algorithm and increasing its accuracy, the number of sampling points
must be chosen accurately.
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