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I. Introduction

Since the constant modulus algorithm (CMA) was first proposed by J.R.Treichler et al. in
1983[1] and applied to the array by R.Gooch et al. in 1986{2], the performance of the CMA
adaptive array has been analyzed in various aspects. Although the CMA adaptive array was
even studied with an experiment by M.Fujimoto et al. in 1995(3], the most of the analyses
have been based on the assumption that the array elements are omnidirectional and in free
space. In 1995, the performance of a CMA adaptive array with dipole elements was analyzed,
when the array was placed on an infinite ground plane and the mutual coupling (MC) effects
among the array elements were taken into account{4).

In this paper, the performance of a CMA adaptive array on a finite sized rectangular
conducting plate has been investigated. The mutual coupling effects among the array
elements and the diffraction effects caused by the edges of the conducting plate have been
taken into account in the ealculation by the hybrid method of MM (Moment Method) and
GTD (Geometrical Theory of Diffraction). The performance with the consideration of
diffracted field is different from that with the array on an infinitely large ground plane where
MC between antenna elements is consider.

II. CMA Adaptive Array

A CMA adaptive array is an adaptive system suitable for mobile communication, where it
can successfully suppress interference under multipath environment. The system output y(4&)
at the &th sampling instant can be written as

A=WiBHXE m

where X(%) is the vector of the system input, and W(X) is the vector of adjustable weights. The
superscript 7'denotes transpose.

The CMA adaptive array eliminates the amplitude fluctuation of the array output due to
the interference. The cost function to be minimized can be expressed as

JW)=E]| | y(&)|2-c* 13 2
where Z| -] denotes the expectation and o is the amplitude of the array output in the absence
of interference. The steepest descent method is employed to minimize the cost function. The

weight vector which adjusts the output of the array is updated according to the following
equation.

Wk+D)= W k) -4u B[ | (&) |2 -P1 XD 1K)} @)

where p is a positive step size and * denotes complex conjugate.
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II1. Computational Method

When we take into account mutual coupling effects between the array elements and the
diffracted field caused by the edges of the conducting plate, the current. vector fon the array
elements can be obtained by solving the following matrix equation([5).

zZI=Vv “)
where Zis the generalized impedance matrix and Vis the induced voltage vector due to the

incident field. The mnth clement of the matrix Zis Zn= Zmn* Zind + Zwn® and the mth
element of the vector Vis V= Va'+ Ve, where

Zuw& —/ Wm d En‘ d] Zmzzg: -f Wm . En‘sg d] (5)
Im Im
and
V= f Wea - B d Vo= f Wa - Be di (G)
Im Im

where I» is the segment on which the mth expansion function is located. Wa is the mth
testing function. Here the piecewise sinusoidal function is used for both the expansion
function and the testing function. E.* is the scattered field from the nth current expansion
function and ¥ is the incident field. Zus (n=m) is the lumped load impedance corresponding
to the output terminal of each element of the array where Zuw' is connected (Zusf =0 when
nem or mis not equal to the number of the expansion function at the output terminal of the
antenna elements). En*¢ and B are respectively the diffracted fields of Enssand £ due to the
edges of the rectangular conducting plate and are calculated by GTD{6}. Mere the corner
diffraction is ignored because it is very weak when the distance between the antenna and the
corner is larger than 0.37[7].

The element output voltage X (i=1.2, -, N) can be obtained by the multiplication of the
current at the output terminal by the corresponding load impedance,

IV. Simulation

Fig.1 shows the configuration of an equally spaced linear array with four quarter
wavelength monopoles. (,0,®) is a spherical coordinate system and d is the interelement
spacing. The radius of each monopole is 0.0027. where 1 is the wavelength.
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Fig.1 The configuration of the linear array with four equally spaced quarter wavelength
monopoles (a) the coordinate system (b) a finite rectangular conducting plate.
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The incident wave is assumed to be a plane wave modulated by a n/4 shift QPSK signal
with a symbol duration 7' For simplicity, the signal bandwidth is not considered in the
computation. Each antenna is terminated by a 5002 load. In the ¢alculation, 15 snapshots are
used to update the weight vector. Each snapshot is taken at the center of a symbol of the first
arriving signal. For the cost function in eq.(2), it is assumed that o=I and the initial weight
vector is We=[1.0.0.0)7. Since all the output powers of the antenna elements are not the same
any more when mutual coupling effects are taken into account, the SNR is defined as the
ratio of the power at the receiving terminal of the first element of the array to that of thermal
noise and set to be 40 dB. The electric field magnitude ratio of the first to the second incident
wave is 3 dB and the time delay of the second wave is Tcompared with the first wave.
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Fig.2 The receiving patterns after Fig.3 The SINR patterns after

convergence when the array is placed on convergence when the array is placed

the ground plane and on the finite on the ground plane and on the finite
conducting plate. 84=80°, ®a=40°, 0.:=55° conducting plate. 64=0,=80°, ®4=70°.
and ®;=40°. with @, varying from 0° to 180°.

Fig.2 shows the receiving patterns of the CMA adaptive array after 200 iterations when the
array is placed on the ground plane and on the finite conducting plate. The direct wave comes
from 04=80°, ®4=40° and the delayed wave from 0,=55°, ®;=40°. It can be seen that both
patterns have the deep nulls in the direction of the delayed wave. The fluctuation of the
receiving pattern when the array on the finite conducting plate is due to the diffracted field
from the four edges of the plate.

Fig.3 shows the SINR patterns of the array on the infinite ground plane and on the finite
conducting plate. The incident directions of the desired and delayed waves are 84=80°, ®4=70°
and 6;=80°, ®i=0°~180°. respectively. When the array is on the finite conducting plate, the
array catches the first wave except at ®i=30°, 35° and 45°~60°. While the array is on the
infinite ground plane, it catches the delayed wave at ©:=40°, 45°. From this figure it can be
seen that the two arrays have different capture property. It depends on the initial receiving
pattern whether the array catches the direct wave or the delayed wave.

Fig.4 shows the SINR patterns after 200 iterations with the finite plate and the infinite
ground plane. The first wave is incident from ®4=90°, 0a=80°, while the incident direction of
the delayed wave varies from 6;=30° to 6,=120° in the ®,=50°~230° plane.
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It can be seen that with the infinite ground
plane the array catches the first wave when
30°s0is75° and catches the second wave when
80°s6i<90°. But with the finite plate the array
catches the first wave for all 6; except at 6,=70°.
This is because the initial pattern has the
maximum value at this angle. Since the initial
received power at @,=50° is less than that at
@®4=90° with the finite plate when 80°<8i<90°,
the array does not catch the second wave in
these directions. When 95°=6is115°, the SINR
did not reach 40 dB after 200 iterations.
Because the initial received power of the
second wave is much less than that of the first
wave the convergent speed is slow. The SINR
reached 40 dB at 6;=120°, because the initial

SINR (48!
50

|
bl T JCEa
ol 80 50 100 10 120
-10 - |
N | B -—e-— on the fnte conducting
20 \ plate
\ - -8~ on the infnite ground
30 - | plane
40t ‘ -

Fig4 SINR patterns with finite and
infinite plane after 200 iteration. when first
wave comes from ©4=90°, 04=80° and the
second wave varies from 0i=30° to 120° in

SIR is already 40 dB. This can be secn from ®:=50°~ 230° plane.

the initial receiving pattern.

V. Conclusion

The performance of a CMA adaptive array with the consideration of mutual coupling
effects among the array elements and the diffraction effects caused by the edges of a
rectangular conducting plate was investigated. The simulation shows that the mutual
coupling and diffracted fields have significant effects on the capture property of the CMA
adaptive array.
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