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1. Introduction 
   In spite of significant advances in the application of numerical techniques in electromagnetic 
problems, there have not been comparable achievements in the physical understanding of the 
scattering and diffraction. Hence a new technique may be needed to obtain analytical expression for 
the solution of canonical problems. One of such canonical structures, of which exact solution is not 
available until now, is penetrable wedge. Some heuristic diffraction coefficients of penetrable wedges 
were constructed by modifying the exact diffraction coefficients of the corresponding perfectly 
conducting wedge[1]. Those solutions provided acceptably accurate results in some limited cases, but 
their diffraction coefficients could not satisfy the edge condition at the tip of the composite wedge.  A 
new method, the virtual ray of diffraction(VRD)[2], is suggested to solve the diffraction by the 
composite wedge illuminated by H-polarized plane wave, as shown in Fig.1. 
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Fig. 1. Geometry of composite wedge consisting of perfect conductor and  

  lossless dielectric illuminated by H-polarized plane wave 
 
The basic concept of the method is inspired from the one-to-one relation between geometrical rays and 
the corresponding diffraction coefficients[3]. It is well recognized that the conventional PO(physical 
optics) solution to the composite wedge consists of the exact GO(geometrical optics) term and the 
edge-diffracted field. In particular, the PO diffraction coefficients are expressed by sum of cotangent 
functions, of which amplitudes and poles are exactly identical to the amplitudes and propagation 
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direction of the corresponding geometrical rays in the physical regions, respectively. However, the PO 
diffraction coefficients reveal erroneous due to those large deviation from zero in the complementary 
regions. 
  
2. Virtual Ray of Diffraction  
   As the permittivity of its dielectric part increases to infinite, the composite wedge may become a 
perfectly conducting wedge. In this limiting case, the exact diffraction coefficients are expressed by 
sum of four cotangent functions with the angular period ∞πν2 , where ∞ν  can be derived from the 
edge condition at the tip of the perfectly conducting wedge[4]. In contrast, the PO diffraction 
coefficients consist of two cotangent functions with the angular period π2 . The PO diffraction 
coefficients may be changed into sum of two cotangent functions among the exact diffraction 
coefficients only if the angular period is adjusted from π2 to ∞πν2 . Then the arguing point is 
whether two additional rays exist in conjunction with two remaining cotangent functions of the exact 
diffraction coefficients or not. We find that the amplitudes and propagation angles of two additional 
rays can be obtained only by extending the conventional ray-tracing technique under the assumption 
that reflections occur on both boundaries of the perfectly conducting wedge. According to the incident 
angle, only one of two wedge boundaries may be illuminated by an incident plane wave. Even in such 
incident case, the concept of the complementary region renders the other boundary to be illuminated 
by the incident ray with the same amplitude but propagation angle of π2 angular shift. The amplitudes 
and propagation angles of two rays reflected by two wedge boundaries are also calculated by 
employing the conventional ray-tracing technique. This new ray-tracing law provides an extended GO 
solution consisting of two actual rays in the physical region and two virtual rays in its complementary 
region. Employing the one-to-one correspondence between geometrical rays and cotangent functions, 
one may construct the exact diffraction coefficients routinely.  
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Fig. 2  Ray-tracing for actual rays in physical region and virtual rays 
                 in complementary region 

 
The above extended ray-tracing procedure was applied to the diffraction by a composite wedge[5]. 

In this paper, we consider the incidence of H-polarized plane wave[6], as shown in Fig. 1. The 
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conventional ray-tracing provides the ordinary GO field as sum of actual rays in the physical region. 
All of the actual rays inside the dielectric part are also obtained exactly. After termination of internal 
reflections by actual rays, additional multiple reflections inside the dielectric part generate a number of 
virtual rays, as shown in Fig.2. But it is not clear how to terminate the virtually internal reflections. 
We impose two additional conditions to virtual rays. The first condition is so clear that all of the 
virtual rays should be located only in the complementary regions. The second condition is that the 
final reflection of virtual rays occurs on the conducting boundary. The last condition is required to 
satisfy the boundary condition at the conducting boundary. According to the one-to-one 
correspondence between rays and cotangent functions, the VRD diffraction coefficients are 
constructed directly by sum of cotangent functions, of which total number is equal to the total number 
of actual and virtual rays. The amplitude and pole of each cotangent function are taken by the 
amplitude and propagation angle of the corresponding ray, respectively. And the angular period of the 
cotangent functions is adjusted to επν2 , where εν can be derived from the edge condition at the tip of 
the composite wedge with relative permittivity ε  in its dielectric part.  
 
3. H-polarized Diffraction Coefficients   

To show the validity of the suggested method, the VRD diffraction coefficients in Fig. 4 are 
compared with the PO diffraction coefficients in Fig. 3 for   , , and  as 60=dθ 300=cθ 150=iθ
ε  increases from 1.1 to 1000. It should be noted that the diffraction coefficients for ε = 1 and infinite 
are the exact solutions for the perfectly conducting wedges corresponding to (dotted black 

line) and 60 (bold black line), respectively. The PO diffraction coefficients in Fig. 3 cannot approach 
to the exact solution of 

0dθ =

ε = 1 even if ε  decreases to 1.1. And the PO diffraction coefficients of large 
ε  in Fig. 3 intersect the exact solution of ε = infinite. In particular, all of the PO diffraction 
coefficients suffer from large deviation from two exact diffraction coefficients on the conducting 
boundary of . In Fig. 3, one may find that the PO diffraction coefficients cannot 

become zero in the complementary regions of 0 6  and . 

300cw θ= =

0w< < 300 360w< <
In contrast, the VRD diffraction coefficients in Fig. 4 approach the corresponding exact diffraction 

coefficients monotonically as ε  decreases to 1.1 or increase to 1000. Fig. 4 illustrates the smooth 
transition from the VRD diffraction coefficients for high ε (>10) to those for lowε (<1.3). Such a 
smooth transition can be implemented by virtually total reflections inside the dielectric part. Hence 
one may conclude that the VRD technique provides highly accurate diffraction coefficients of a 
composite wedge consisting of arbitrary dielectric and perfect conductor. According to our 
formulation of dual integral equations[3], the exact diffraction coefficients have to become zero in the 
complementary regions. Compared with the PO diffraction coefficients, the VRD diffraction 
coefficients satisfy the null-field condition quite well in the complementary regions in 0 6  
and .  

0w< <
300 360w< <
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Fig. 3  PO diffraction coefficients for , , and  60=dθ 300=cθ 150=iθ
 
 
 

 
 

Fig. 4  VRD diffraction coefficients for , , and  60=dθ 300=cθ 150=iθ
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