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INTRODUCTION

The periodic structures are used in many devices such as filters,
polarizers, and diffraction elements, so that it is important to investi-
gate the scattering characteristics of the periodic structures. Most papers
have dealt with infinite periodic structures to which the Floquet theorem
is applicable. Recently, Matsushima and Itakura [1] have reported the
effects of edges of an array with a finite number of strips. To large peri-
odic structures with a finite number of unit cells, few effective numerical
techniques have been applied because of necessity of handling a large
number of unknowns. Facq [2], however, showed that the method of moments
is applicable to large finite periodic structures by noting that the co-
efficient matrix of a system of linear equations is block Toeplitz.

In this paper, we investigate the scattering of electromagnetic wave
incident upon a large, but finite, number of equally spaced parallel con-
ducting cylinders with arbitrary shape. Boundary element method [3] is used
to transform an integral equation for the induced current into a matrix
equation. To obtain the solution of the matrix equation, we can use the
conjugate gradient method combined with the fast Fourier transform [4],
which reduces the execution time in computing and saves the storage on
a computer, by extending the coefficient block Toeplitz matrix to a circu-
lar matrix.

FORMULATION BY BOUNDARY ELEMENT METHOD

Consider the finite number of infinitely long perfectly conducting
cylinders. Each cylinder is parallel to the z direction and is uniformly
spaced from its neighbors by a distance d in the x direction as shown
in Fig.l.

Let TE wave E‘(f)(h E (#)z) and TM wave H (@) (= Hl(f)z) incident upon
the array where # is the position vector of the field point and 2 is
the unit vector in the 2z direction. It is well known that the electric
and magnetic integral equation for each induced surface current K are
expressed as

Ei(cf’ L ai s - : / for TE (12)
)= % ’Cﬁ ZJ k(ﬂ’ﬁ)q(fﬂlﬁ)ict or wave a
n= 1V

HY(F) == L K(e) - ﬁZ Jr K (£ )'ac‘(ﬁ’mdcn for TH wave (1)

ﬂ:l
G(r, £)= H>(RlP-ey]) (2)

where k(=2 7/X) and f(= J}&/ ) are the wave number and the intrinsic imped-
ance in free space, respectively. [n indicates the surface of the nth cyl-
inder, H( is the zero-order Hankel function of the second kind, and
0% is the position vector of the source point on the nth cylinder.
3/311 lmplles the derivative in the direction of an unit outward nomal
8(F) at @G-

According to the boundary element method, the surface of each cylinder
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is divided into Q elements. The ®Ath element of the nth cylinder is indi-
cated by [fix and two nodal points of In¢ are represented by Pas and Pno+r.
The value of K along element [xs is assumed to be interpolated from the
values Kgp and Knpe at the nodal points P,;(e and Pﬂde as

K(fﬂ): I,:ﬁcgu)}(nra * I-:;s(su)kﬂpﬂ (3)

where
Inlﬁ( 911)= (Sﬂﬂ-}l = B >/ (G'npﬂ - 9«/3)
Iﬂ;(3“)= (Bn = 91!,&)/(9ﬂp+| = Bnp)

In Eq.(4), 63‘4 is the azimuth angle of the vector from the origin Oy to
the nodal point Prs . We assume Bw = 0 and BGperi= 27L. Substituting Eq.(3)
into Egs.(la) and (1b), we obtain

(91",6 £ 911 £ en,on ) (4)

Ee) = TR 5 Z[ Ao (PIK s + A”(f)k,.,,ﬂ} (5a)

n=|l p=y
- " N Q
H'e)= —%K(r) = ";%’gi['s,f(f)mﬁ - ’Bf(f)k,,ﬂﬂ] (5b)
where
s On ol , , , ,
AD()= | Lay(82) GO | £)8(65 ) dss (6a)
bxp Cgm i B

s 9'& +l 3 I ? e (O ¢ 2 ] ' 7

B2 () = ﬁjg M L BO{REDRE EXHE R |F-8 D60 o (1)
np

3/2
9 (8 ) = [{J(&;>}‘+ {df(6)/d6x ]2] (7)

In Eq.(6b), f{(f.,:,f) denotes an unit vector in the direction - and HE”
is the first-order Hankel function of the second kind. The boundary of
the cross section of the nth cylinder is expressed by the curve ry = £(8n)
in the polar coordinate (ry, ,8y) associated with the cylinder. Let the
field point be coincided with the nodal point Pmx whose position vector
is defined by fm«. Then Egs.(5a) and (5b) lead to

E:'lo( = ZZ A:: kn,a. (8a)
e (1em4N, |46 EQ)
H;wt = 2 2 Bnﬁ Kangp (8b)
n=| A=l
/ 1, %3 b(,or
= 7 TR (Awn + “Am _
/ 4 | XA 2 %A
B:i =T 2 Emn 5**/3 - ’y_( Ban * B ) (9b)

where §po is the Kronecker delta functlon and SA <l Bm.,) and Emu.( Hm;)
are values of ’A,, e B ) and El (HE ) at the nodal pomt Emu, respectively,
with s = 1,2. Here we have assumed *A%n = o i (*BR2 =*B%% ). The equations
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(8a) and (8b) are rewritten in the matrix form as
v=ZWU (10)

In Eq.(10), Z is NQ X NQ matrix and u and v are NQ dimensional column vec—
tors:

Z,Z,, Zy U, v,
Z;. 222 ks ZZN uZ v,

i . Y : s W= . w= : (11)
Z.,w Zy; R I,m u}( Yy

where block Zgn is Q X Q submatrix whose ((,A)th element is A:ﬁ Uiiﬁ) and
um and vm are Q dimensional column vectors whose ® th elements are Kme and
Ema ( Hox ), respectively.

We can easily show ihat Amoﬁvfw-—- A:ﬁ( B,ﬁyafw = B:’;) for any integer
V. Therefore, it follows that Z is a block Toeplitz matrix. So, we can ef-
ficiently solve Eq.(10) by using the conjugate gradient method combined
with the fast Fourier transform presented in reference [4].

NUMERICAL RESULTS

As examples, we consider the current distributions on an array of
32 identical circular cylinders. The radius a of each cylinder is 0.1\ and
the space d between adjacent cylinders is 2/3A. Each cylinder is equally
divided into 16 elements. For the TM plane wave incident upon an array
at the angle 90° (normal incidence) and 60°(at which the grating anomaly
occurs), Figs.2(a), (b), and (c) show the current distributions on the
left, middle, and right of an array, respectively. Figure 3 show the
current distributions for the TE plane wave with the same incident angle
as TM plane wave. In Figs.2 and 3, the interval (0, 7t) is an illuminated
region and the interval (-7 ,0) is a shadow region. The great change of
the current distribution at the edges of the array of cylinders is seen
in case of incidence at the angle causing the grating anomaly.

CONCLUSIONS
The current distribution of a finite periodic array of cylinders has

been analyzed by the boundary element method. Solving the matrix equation,
we have used the conjugate gradient method combined with the fast Fourier
transform, which can greatly reduce the execution time in computing and
drastically save the storage on a computer. From numerical examples, we
showed that the edge effect on the current distribution is remarkable
at the incident angle causing the grating anomaly.
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Fig.l. Finite periodic array of cylinders
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Fig.2. Current distribution of the array of cylinders

illuminated by a TM plane wave
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Fig.3. Current distribution of the array of cylinders

illuminated by a TE plane wave
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