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Abstract— Application of arbitrary-degree elements is a feature
that is not yet practically deployed in commercial or scientific
FEM software. The present paper provides reasons supporting
the idea of developing arbitrary-degree element software, which
would have considerable benefits to FE analysis. Here, some
simple FEM modal problems are analyzed as examples to
illustrate the proposed idea.

Index Terms— arbitrary-degree elements, FEM.

I. INTRODUCTION

THE benefit of applying high-order elements in FEM
has been known for a long time[1]. Some generaliz-

ing attempts have been carried out to deploy higher-order
elements in FEM analysis[4]. However, little has been at-
tempted on arbitrary-degree, higher-order elements in FEM
analysis. In general, the application of arbitrary-degree high-
order elements in FEM solutions of field problems requires
two fundamental criteria to be met and they are namely:

1) An arbitrary-degree mesh/mesh-generator.
2) The availability of arbitrary-degree fundamental element

matrices, which have been preferably evaluated using
analytical approach.

In addition, a generalized formulation relating various types
and classes of element matrices to possible fundamental ma-
trices must be derived. In this paper, a general formulation
on arbitrary-degree, higher-order element for analysis has
been presented. As a demonstration, the modal solutions of
both a homogeneous and nonhomogeneous partially loaded
waveguide are evaluated using various degrees of interpo-
lation. Finally the results are compared to those generated
using analytical formulation and to those generated using
conventional low order elements.

II. ARBITRARY-DEGREE INTERPOLATION

As depicted in Fig. 1, in an arbitrarily sized rectangular el-
ement, an arbitrary number of fractions along each dimension
is assumed. Consequently (m + 1) by (n + 1) interpolation
nodes would be needed in the element. A two-dimensional
extension of Lagrangian interpolation of an arbitrary function
Φ(x, y) over the element is presented in equation (1):

Φ =
(m+1)×(n+1)∑

i=1

φiαi(x, y) : x1 < x < x2, y1 < y < y2,

(1)
where i∈ [1, (m + 1)(n + 1)] is the node index in the element
and the functions αi(x, y) are the required shape functions
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that meet Lagrange interpolation properties. This is the key
to all proceeding steps in the present paper. An alternate
way of representing the nodes is to use a vector-formed
two-dimensional index as (p,q). When the local coordinates
are used and equidistant interpolation nodes are adopted,
α(p,q)(ξ, ζ) can assume as

α(p,q)(ξ, ζ) =
mm Qp−1

s=0 (ξ−s/m)
Qm

s=p+1 (ξ−s/m)

p!(m−p)!(−1)m−p ×
nn Qq−1

s=0 (ζ−s/n)
Qm

s=q+1 (ζ−s/n)

q!(n−q)!(−1)n−q ,
(2)

Equation (2) can be directly used to calculate the necessary
element matrices for finite element calculations. In this work, a
symbolic math calculation code written in ”Waterloo Maple”

are used to obtain the fundamental matrices within accurate
symbolic regime, i.e. they contain exact fractional numbers.
Although the computation of such fundamental elements may
require considerable amounts of CPU time, it is not a matter
of concern since these results are stored in a fixed database
once and forever. Each elements matrix can be calculated
as a weighted combination of the mentioned fundamental
elements’ matrices eventually.

Fig. 1. Subdividing a rectangular element with fraction numbers m = 7 and
n = 5

III. ERROR ESTIMATES

For modal FEM problems and problems with no distributed
excitation within problem domain, the actual location of
interpolation points plays little role in FEM interpolation
error. Unlike direct approximation of known functions, FEM
analysis leads to a polynomial that meets the conditions for
the minimization of a variational form. Since the degree of
the polynomial is constant and known, the final resulting
polynomial is unique and is not affected by the choice of
interpolation nodes. Thus, for the study of asymptotic behavior
of error, it is sufficient to use the error bound estimate for a
two-variable Lagrange interpolation, given[2] as

|Em,n(x, y)| ≤
Max| ∂Ψ(m+n+2)

∂xm+1∂yn+1 |
(m + 1)!(n + 1)!

, (3)

Unless interpolation of some spurious function(s) like that
of Runge’s counter example is intended, the interpolation
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would converge to the true result as both (m+1) and (n+1)
keep increasing simultaneously. Situations like that of Runge’s
counter example do not arise in many FEM problems unless
solution of problems with distributed excitation (eg. Poisson’s
Equation) is considered.

IV. FEM FORMULATION

For demonstration, a rectangular waveguide, which is filled
homogeneously with one single isotropic material is consid-
ered first. followed by the same waveguide filled with two
different layers of dielectrics. The vector variational forms for
the nonhomogeneous case are borrowed from [1].

A. The Homogeneous Case

The FEM formulation for homogeneous waveguide prob-
lems can be stated as follows:

A [ψ] = k2
t B [ψ], (4)

where

Ae =
∫
Ωe

(∂αe
i (x,y)
∂x

∂αe
j (x,y)

∂x + ∂αe
i (x,y)
∂y

∂αe
j (x,y)

∂y ) dx dy,
(5)

Be =
∫
Ωe

αe
i (x, y)αe

j(x, y) dx dy, (6)

the superscript index ”e” in the mentioned equations indicates
that these are element matrices. Thus global coefficients matrix
must be appropriately assembled. Indeed, before solving the
obtained matrix eigenvalue problem, appropriate boundary
conditions should be applied whenever needed. Note that
ψ stands for a vector of nodal values of either Ez or Hz

depending on the choice of TMz or TEz modes of the
waveguide.

B. The Nonhomogeneous Case

For the nonhomogeneous case, the formulation is slightly
more complex. The existing modes are no longer expressible
as TEz or TMz fields (ẑ is the direction of propagation). A
straight forward FEM formulation for the problem follows in
equation (7):

1
εe

rµe
r−δ2

[
εe
rA0 δC0

δCT
0 µe

rA0

] [ Ez

Z0Hz

]
=

k2
0

[
εe
rB0 0
0 µe

rB0

] [ Ez

Z0Hz

]
,

(7)

δ � kz

k0
, (8)

Ce
0ij =

∫
Ωe

(∂αe
i (x,y)
∂x

∂αe
j(x,y)

∂y − ∂αe
i (x,y)
∂y

∂αe
j (x,y)

∂x ) dx dy,
(9)

Ae
0ij is equivalent to Ae

ij in equation (5), Ez and Hz represent
vectors containing nodal values of z-component electric and
magnetic field phasors across the problem domain. Simi-
larly Be

0ij appears to be equivalent to Be
ij of equation (6).

Equation (9) provides the definition for Ce
0ij . The global

matrices in equation (7) must be properly assembled from

their element based equivalents. It is noted that the form of
this formulation does not directly comply with that of a gen-
eralized eigenvalue/vector problems. The trick, however, is to
assume different values of δ and to calculate the corresponding
eigenvalues/vectors for each. The range in which δ should be
varied, is [0, 1)

⋃
(1, εrMax), where εrMax is the maximum of

dielectric constant εr across waveguide’s cross section. Note
that at δ = 1 and δ = εrMax , our problem becomes singular
and thus these values should be avoided.

V. NUMERICAL RESULTS

For demonstration, a rectangular waveguide with a cross
section of (a × b) m2 is considered. The cross section is
orthogonally divided into M × N rectangular elements (M
fractions along x̂ and N fractions along ŷ). Each element
is internally subdivided into m × n subregions resulting in
(m + 1)× (n + 1) nodes each. For both the nonhomogeneous
and homogenous examples stated here, the dimensions of the
waveguide are assumed to be a = 0.03m and b = 0.02m. To
obtain equal mesh and node density along both directions (ie.
x̂ and ŷ), M

N = a
b = 3

2 = 3k
2k and m = n = l is assumed.

In Figs. (2), (3) and (4), the horizontal axis represents the
parameter k while the vertical axis stands for l. There would
be (M × m + 1) × (N × n + 1) = (3k × l + 1)(2k × l + 1)
nodes for our problem. The number of elements would also
follow the function 3k × 2k.

In general, k increases the number of elements and the total
number of nodes would increase consequently. At the same
time, l would directly increase the degree of interpolation used,
which leads to an increase in the number of nodes, while the
number of elements used is kept constant. Figs. (2), (3) and (4)
provide a contour-plot of equl-accurate choices of k and l.
Another contour that has been added to the mentioned figures
is the plot of equal CPU time contours. The first set of contours
is obtained by drawing a contour plot of the following error
function:

E = log2|fc − f̃c|, (10)

where fc and f̃c stand for the values of numerically and
analytically calculated cut-off frequency of a particular mode.
Only TEz mode(s) results are provided here, but it must be
stated that TMz mode(s) results also obey similar conditions
in terms of error and accuracy. The CPU time contours are
drawn as a decimal base logarithm of consumed CPU time(s)
in seconds.

From the mentioned graphs of Figs. (2), (3) and (4),
two major observations can be made. To reach maximum
accuracy (or minimum error), it is far more efficiently achieved
by moving along l rather than k. The other observation is
that (higher modes) maximum computation accuracy can be
achieved at higher CPU time costs. For the nonhomogeneous
case, error and computation-time curves do demonstrate sim-
ilar properties.

The nonhomogeneous example here deals with the same
waveguide that has been half loaded by a layer of dielectric
with εr = 4 located in 0 < x < a; 0 < y < b

2 . Closed form
equations for partially loaded waveguide’s cut-off frequencies
are available in most advanced EM texts. These are usually
called LSE and LSM modes of partially loaded waveguides.
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Fig. 2. Error (thin) and Computation Time (thick) contours for the 1st TEz

mode eigen value vs k and l

Fig. 3. Error (thin) and Computation Time (thick) contours for the 3rd TEz

mode eigen value vs k and l

Table (I) and Table (II) provide the comparing of analytical
and numerical cut-off frequencies for both homogeneous and
nonhomogeneous cases using 4-node elements and 64-node

elements. In order to keep the computational complexity ap-
proximately at the same level, the total number of nodes is kept
constant by varying the number of elements at the same time.
As observed in Tables (I) and (II), high-order elements produce
far more accurate results for the same computational cost. In
addition, higher modes lose their accuracy more rapidly in the
nonhomogeneous case. One of the major causes is that there
are too many spurious modes between the desired modes in
nonhomogeneous case.

VI. CONCLUSION

Arbitrary-degree mesh along with appropriate arbitrary de-
gree fundamental element matrices has been developed and
applied for analysis of two modal problems. Complexity and
error analysis of the example problems reveal that arbitrary-
degree high-order elements can afford considerable improve-
ments in FEM analysis speed and accuracy. Thus, it is worth
investing more algorithmic and coding efforts to more widely
replace the regular lower order elements. Issues like arbitrary
high-degree element mesh-generation and arbitrary high-order
interpolation’s of Tchebychev and Hermite[3] type are among
the interesting ideas that need to be investigated. Ongoing

Fig. 4. Error (thin) and Computation Time (thick) contours for the 6th TEz

mode eigen value vs k and l

TABLE I
CUT-OFF FREQUENCY OF SOME PRIME TEz MODES IN THE

HOLLOW WAVEGUIDE OBTAINED USING 64-NODE AND 4-NODE

ELEMENTS(ELM) AND COMPARED TO ANALYTICALLY

CALCULATED VALUES

Frequency×1010Hz

Analytical 64-node ELM 4-node ELM
TEij

0.74965845116532 0.74965845116536 0.75123230659503 01

1.49931690233064 1.49931690235604 1.51192959216360 02

2.24897535349596 2.24897581896715 2.29164773952789 03

0.49977230077688 0.49977230077672 0.50023846906262 10

0.90097732825383 0.90097732825389 0.90254556915563 11

1.24943075194220 1.24943075194483 1.25336134050884 21

2.12035429757121 2.12035429760716 2.13819133459099 32

TABLE II
CUT-OFF FREQUENCY OF SOME PRIME HYBRID MODES IN THE

PARTIALLY LOADED WAVEGUIDE OBTAINED USING 64-NODE AND

4-NODE ELEMENTS(ELM) AND COMPARED TO ANALYTICALLY

CALCULATED VALUES

Frequency×109Hz

Analytical 64-node ELM 4-node ELM
Mode

4.55922365044621 4.559223650448166 4.569393605706706 1

6.06192092493685 6.061920924947108 6.073546202642527 2

10.4339453728603 10.43394577884192 10.57890756370606 3

10.9033473101955 10.90334786500416 11.04819184894751 4

15.5012752449882 15.50143821395703 15.70580243825406 5

19.5523926737524 19.85177079542511 2.043095257967376 6

19.8494789059400 25.48095312576569 2.557307218276380 7

work is looked into generation of similar results in 3D
problems.
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