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Abstract

We present a parallel multilevel fast multipole algorithm aimed
at low cost GRID computer environments connected by a
fast switch. The algorithm is a scheduling algorithm where
work packets are handled in certain order to ensure minimal
idle time of the processors and to avoid simultaneous bursts
of communication between the processors. The algorithm is
implemented on a method of moment discretisation of a two-
dimensional TM electromagnetic scattering problem. Perfor-
mance results are shown for lens objects 1000 wavelengths in
size.

1. INTRODUCTION

The Multilevel Fast Multipole Algorithm (MLFMA) has
gained considerable interest during the past decade to solve
very large electromagnetic scattering problems using surface
integral equation techniques. For an introduction we refer the
reader to [1]. The Method of Moments (MoM) technique
applied to discretise an integral equation leads to a dense
system of linear equations of dimensionN by N if the number
of discretisations isN . An iterative solution of this system
where the matrix-vector products are evaluated with MLFMA
allows for a solution with a time complexity ofO(N logN )
and a similar memory complexity. If the number of iterations
can be limited then MLFMA allows for the solution of very
large problems with limited computer resources.

The close to linear increase in complexity as a function of
the number of unknowns means that the size of the problems
that can be handled increases significantly when the available
computer resources increase. The GRID technology allows for
an easy and affordable construction of a parallel computer
system with distributed memory. Parallelisation of electromag-
netic simulation techniques has been a subject of considerable
research in the past. However, it gained momentum after
the introduction of GRID since affordable and very versatile
parallel systems became available. For example the book [2]
introduces the reader to GRID computing essentially focused
on the Finite Difference Time Domain technique. GRID com-
puting facilities come in very different configurations, ranging
from a large set of computers widely distributed and connected
through the ”slow” internet or a cluster of similar computers

connected through a ”fast” switch. In each case each computer
has its own memory. It is obvious that the communication
between processors is an important aspect. The less commu-
nication is needed the higher the performance of the algorithm,
this becomes an essential issue when considering a GRID
facility depending on internet communication.

Parallel MLFMA has already gained some attention, we
refer e.g. to [3]. In this contribution we will present a parallel
MLFMA aimed at GRID computing facilities interconnected
by a switch. Hence, communication between processors is fast
but not as in a dedicated parallel computer. Our algorithm is
based on a heuristic that tries to reduce idle time of processors
and that tries to avoid overloading the switch by distributing
communication between processors in time. Both the set-up
stage as the matrix-vector product stage are parallelised.

Although the algorithm does not make any specific assump-
tions about the dimensionality of the problem we will apply it
to a two-dimensional TM electromagnetic scattering problem.
This problem is solved using a boundary integral equation
based on Huygens principle that has already been developed
in [4]. The far interactions in the resulting MoM matrix are
evaluated with MLFMA and the near interactions are evaluated
extremely accurate by not only evaluating the self-patch con-
tributions analytically but also the neighbor-patches. Another
application of this algorithm, although not parallelised, has
been shown in [5] and [6]. Since we aim at simulating very
large structures in terms of wavelengths we will use a high-
frequency MLFMA. To accelerate the near interactions we
will exploit all symmetries in the structure using a special
symmetry extracting algorithm based on splay trees [7]. In
this paper, with specific optical applications in mind, we will
suffice by a simple almost diagonal preconditioner.

To show the performance of our algorithm we will show
full-wave optical simulations of lenses with sizes of about
1000 wavelengths and coated with quarter-wavelength anti-
reflection coatings. We will also show the perfomance of the
algorithm as a function of the number of processors involved.

First the boundary integral equation and its MoM discreti-
sation are introduced. Then we will discuss the MLFMA after
which we will explain the heuristic used for the parallelisation.
Finally, some examples will demonstrate the performance of
the algorithm.
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Fig. 1: Object illuminated by an incoming field.

Fig. 2: Object in an object.

2. METHOD OF MOMENTS

Consider a cylindrical body (see Fig. 1), parallel to thex-
axis, with material parametersε andµ that is illuminated with
a TM incoming fieldei

x, hi
t, where the subscript ‘t’ indicates

vectors in theyz-plane. We assume anejωt time dependence.
The boundary curve is denoted byC. The boundary integral
equation can then be written as [4]
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with k2 = ω2εµ and the Green function
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j
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0 (k|r− r′|), (3)

and similarly for k2
0 and G0. C− and C+ denote that the

contourC is approached from the inside and outside respec-
tively. The unknowns are the tangential electric fieldex and
the tangential magnetic fieldht to the contourC. These un-
knowns are equivalent to the equivalent magnetic and electric
surface current densities. For simplicity we assumed a single
object, the extension to multiple objects is straightforward. In
particular we also consider objects embedded in other objects
as is shown in Fig. 2.

The contourC is divided into a number of segments on
which pulse basis functions and overlapping triangular basis
functions are defined. The pulse basis functions are used
to expandht and as test functions for (2). Conversely the
triangular basis functions are used to expandex and as test
functions for (1). In this way a consistent Galerkin MoM is
obtained (see also [4]).

In order to obtain a high accuracy the logarithmic singular
part is extracted from the Green function in some cases. The
basis and test function integrations for this logaritmic part are
evaluated analytically for self-patch integrations (i.e. the basis
and test functions are defined over the same segment) and for
neighbor-patch integrations (i.e. the basis and test functions
are defined over adjacent segments). Especially the last ones
require tedious analytical calculations. For more details we
refer to [6]. The other basis and test function integrations are
evaluated using Gaussian quadrature rules.

Finally, the MoM results in a linear system of unknowns

Z · X = B, (4)

with X a vector containing the unknown expansion coeffi-
cients of ex and ht in triangular and pulse basis functions
respectively.Z is the interaction matrix andB is a vector
representing the tested incoming fields. This system is solved
iteratively using the TFQMR algorithm [8].

3. NEAR INTERACTIONS - SPLAY TREES

Often large structures contain symmetries where two pairs of
interacting segments are geometrically equal. This obviously
means that the corresponding two elements in the interaction
matrix Z are equal. Computing time can be saved if these
symmetries are recognized, the corresponding interactions
only need to be calculated once. If one hasN segments then
there areN2 interactions. A brute force method comparing
all these interactions to each other would lead toO(N4)
computing time, which obviously would jeopardise the whole
algorithm. Even if one restricts symmetry extraction to the
near interactions this would still lead toO(N2) computing
time overwhelming theO(N logN ) complexity of MLFMA.
To avoid this we extract symmetry for the near interactions
using a splay tree [7]. The splay tree will require somewhat
more memory but yields a drastic reduction in the set-up time
[6].

4. FAR INTERACTIONS - MLFMA

The number of unknowns in a scattering problem can be high
for two reasons. First the structure can be large measured in
wavelengths and at least 10 to 30 unknowns per wavelength
are needed depending on the required accuracy. Second the
geometry could contain small geometrical details requiring a
fine discretisation to resolve. The high-frequency MLFMA,
based on plane wave expansions, is especially suited to tackle
structures that are many wavelengths in size. On the other
hand a multipole based low-frequency MLFMA is suited for
small but complex structures with many unknowns per wave-
length. Both techniques can be combined. However, in our
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Fig. 3: Two interacting groups in MLFMA.

approach we mainly focus on problems that are (extremely)
large compared to wavelength motivating the high-frequency
MLFMA.

The MLFMA is a fast technique to evaluate the fields in a set
of N points due toN sources located in those same points. We
will not go into details of this technique and restrict ourselves
to the main characteristics (for a detailed account see e.g. [1]).
The segments are grouped into a number of groups and instead
of calculating the individual interactions between each two
segments the interactions are calculated groupwise. This is
illustrated in Fig. 3 and mathematically expressed through the
following expansion of the Green function

H
(2)
0 (k|ro − rs|)

≈
n=+Q∑
n=−Q

[ejk(φn)·(rs−Rs)Tn(Ro −Rs)e−jk(φn)·(ro−Ro)], (5)

whereRs andRo respectively are the centers of the source and
the observation group and wherers and ro are two arbitrary
points on the segments in the source and observation groups.
k(φn) are wavevectors along equidistant directionsφn, n =
−Q, ..., 0, ...,Q andTn is the translation operator given by

Tn(R) =
1

2Q + 1

n′=+Q∑
n′=−Q

H
(2)
n′ (k|R|)ejn′(Φ−φn−π/2), (6)

with Φ the angle betweenR and they-axis.
The first part (the desaggregation) in (5) depends only on

the segments in the source group and is an expansion of plane
waves along directionsφn. The second part depends only
on the centers of the observation and the source group and
represents the translation of plane waves. The third part (the
aggregation) depends only on the segments of the observation
group and is an aggregation of incoming plane waves.

In the MLFMA this is extrapolated hierarchically by group-
ing groups into groups and so on. In that way all the in-
teractions, normally requiring a computational complexity of
O(N2) can be reduced toO(N log(N )).

5. PARALLELISATION HEURISTIC

The MLFMA divides the whole structure in a grid of hier-
archic squares. Using a space filling curve these squares are

Fig. 4: Coated lens.

allocated to the different processors such that near squares
are as much as possible allocated to the same processor. Of
course, the geometries under consideration will encompass
many empty squares that are eliminated. The load over the
processors is balanced. This is a rather straightforward proce-
dure.

The workload is divided in small packets, involving the
calculation of near interactions, aggregations, translations or
desaggregations These packets are stacked in a certain order.
The main principle is to handle first those packets that might
result in data that another processor might need. If for a certain
packet information from another processor is needed that is
not yet available then it will be handled later. As soon as
information is available for another processor that information
will be made available to be sent to the other processor
and will be sent as soon as the other processor is ready to
accept it. Near interactions usually require no communication
between processors and are postponed as long as possible to
a moment where the processor has nothing else to do, hence
near interactions get lowest priority.

This heuristic has the advantage that communication does
not come into bursts which would overload the switch and
which would result in waiting cycles in the processors. Of
course defining and sceduling all the work packets is a
complex task.

Also the set-up stage is parallelised. The splay tree is
divided over the processors, each having its own tree of a
smaller size than the total tree.

6. NUMERICAL EXAMPLES

All simulations are performed on a system consisting of eight
(four times two cores) 64 bit AMD Opteron 270 processors
running at 2 GHz with 2 GByte of RAM for each processor.
An 1 Gbit/s switch interconnects the four machines with two
processors. Possible fast communication between two cores
in the same machine was not exploited. Parallelisation and
communication was implemented using the Message Passing
Interface (MPI) [9].

The basic geometry that we will consider is a lens as shown
in Fig. 4. We use a frequency of 299.792 THz corresponding to
a wavelength of 1 mm. The lens has a diameter of 1 m, hence
1000 wavelengths. The relative permittivity of the lens is 4.
The lens consists of circular cylindrical parts with a curvature
radius of 1 m. We will also consider a lens coated with a
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quarter wavelength transformer. The coating has a relative
permittivity of 2 and a thickness of0.25/

√
2 mm. The lens

is illuminated by a Gaussian beam with a waist of 30 cm
diameter at the center of the lens.

The number of unknowns is 84000 for the uncoated lens
and 144000 for the coated lens. The number of unknonws
does not double because the discretisation of the external
coating surface can be somewhat larger than the discretisation
of the internal coating surface. The reason for this is that
the wavelength in the coating is a factor

√
2 larger than the

wavelength in the lens.
The set-up time for the uncoated lens is 5.12 s whereas

the set-up time for the coated lens is 61.24 s. Due to the
circular symmetric nature of the lens the number of equal
interactions is high. However, we note a considerably higher
set-up time for the coated lens because there are many more
near interactions that differ from each other. Almost all near
interactions between a segment on the external coating surface
and a segment on the internal coating surface are different from
each other due to the different discretisation density used on
both surfaces.

Using the almost diagonal preconditioner the number of iter-
ations is 300 for the uncoated lens and 336 for the coated lens
where the precission of the TFQMR algorithm was set to1e−5.
The total solve time was respectively 101.56 s and 195.52 s
mainly explained due to the larger number of unknowns. The
low number of iterations in both cases is a manifestation of
the simplicity of the physics in the problem, there are but
few interference and resonance phenomena making the lens
problem a very well-conditioned problem. Also the type of
integral equation used leads to a well-conditioned problem.
Without preconditioner the number of iterations is respectively
1519 and 751 which requires a CPU-time of 523.47s and
444.47s respectively. This is an interesting observation. The
uncoated lens contains more interference which manifests
itself in more iterations. These interferences are of a local
nature which means that the preconditioner can capture this
part of the physics. We also note that the accuracy of the
evaluation of the near interactions and in particular of the self-
patch and neighbor-patch interactions is decremental to limit
the number of iterations.

In Fig. 5 a density plot of the electric field amplitude is
shown for the uncoated lens. The area shown is 2 m by 2 m
in size and contains 1000000 pixels that were calculated in
84.93 s using the parallel MLFMA algorithm. Fig. 6 shows
the same region for the coated lens requiring 85.97 s. Note
the higher field density in the focal point in Fig. 6 compared
to Fig. 5. In Fig. 7 and Fig. 8 for both cases a close up is
shown for a region of 1 cm by 1 cm just at the surface of the
uncoated and coated lens respectively. Again 1000000 pixels
were calculated now requiring 1184.05 s and 1087.47 s. The
reason of this significantly increased CPU-time is because the
number of near pixels is much higher yielding less benefit from
MLFMA. The higher standing wave ratio in front of the lens
is clearly visible in the uncoated lens compared to the coated
lens. This is even more profound if we look at the electric

Fig. 5: Field density in the uncoated lens.

Fig. 6: Field density in the coated lens.

field along a line through the axis of the lens as shown in
Fig. 9. Note that the standing wave ratio inside the lens also
is lower in the coated lens compared to the uncoated lens.
The high accuracy of the simulations is also clearly visible by
considering the continuity of the field at the interfaces.

Finally we consider an efficiency study of the algorithm
as a function of the number of processors. We consider the
coated lens case. The uncoated lens gives similar results.
Fig. 10 shows the efficiency as a function of the number of
processors used. The matrix-vector multiplication efficiency
slowly decreases as the number of processors increases but
it is still 83% for eight processors which is very reasonable.

4 International Symposium on Antennas and Propagation — ISAP 2006



Fig. 7: Close up of the field density in the uncoated lens.

Fig. 8: Close up of the field density in the coated lens.

E.g. the best result in [3] had an efficiency of 81% for eight
processors but these were obtained on part of one node of
an IBM supercomputer p690 model 681 allowing extremely
fast communication between processors. The efficiency of the
set-up time becomes higher than 100% when four or more
processors are used. This is due to the fact that the splay
tree becomes smaller in each processor when the number
of processors increases making the algorithm more efficient.
Obviously this means that our splay tree implementation when
used on only a few processors could be more efficient.

The reader might argue that the number of unknowns used
in the example is not so high. At the time of the conference
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Fig. 10: Efficiency as a function of the number of processors.

we will show results containing several million of unknowns.
The largest example we have calculated now has close to two
million unknowns. We could also have calculated a ten times
larger lens but this would not provide new information and it
would become impossible to simulate the uncoated lens on a
single processor.

7. CONCLUSIONS

We have presented a parallel MLFMA algorithm allowing very
high parallelisation efficiency on a cheap GRID cluster con-
nected by a fast switch. The algorithm was applied to a two-
dimensional TM scattering problem allowing the simulation
of structures of 1000 wavelengths in size and about 150000
unknowns in less than 5 minutes on eight 2 GHz processors.
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