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1. Introduction
The inverse scattering problem of reconstructing a complex object in structure from the

measured scattered waves is of interest from the viewpoint of application to medical diagno-
sis, underground prospection, and nondestructive examination. In numerous previous studies,
nonlinear optimization techniques and regularizations are employed, where we suffer from traps
at a local minimum and empirical decision on parameters. With the aim of decreasing the
difficulty, some researchers dealt with the source type integral equation and investigated the
nonradiating(unmeasured) equivalent current which contributes nothing to the scattered waves
outside the object[1–3].

The authors have formulated the scattering problem using T-operator which transforms
incident waves into the equivalent currents[4–6], and have proposed an iterative algorithm[7]. T-
operator may be identified with the equivalent current for any incident waves. In this article, the
algorithm is applied and extended to reconstructing an object in two dimensional structure also
under noisy conditions. The scattered waves are reformed as elements of T-matrix, and their
ineffective data due to noise are suppressed. The measured and unmeasured equivalent currents
are separated by using orthonormal basis functions, where the measured equivalent currents are
directly connected with the elements of T-matrix. The object and the unmeasured equivalent
current are reconstructed by decreasing a residual error of the equivalent current in the least
square approximation without solving the direct problem and an additional regularization.

2. Formulation
Let us consider a scattering problem of a cylindrical object located in a region RV of

free space under E-wave time-harmonic excitations. The geometry is shown in Fig. 1. The
time factor exp(jωt) is suppressed hereafter. The object is described by the object function
χ(r′′) = εr(r′′)− 1, where εr is the dielectric constant. We denote the scattered wave by us, the
incident wave by uin, and the total wave by ut. These waves satisfy the integral equations:

us(r) =
∫

RV

G(r, r′′)Jeq(r′′)dr′′, r /∈ RV (1)

ut(r′) = uin(r′) +
∫

RV

G(r′, r′′)Jeq(r′′)dr′′, r′ ∈ RV (2)

where G is Green’s function given by G(r′, r′′) = − j
4H(2)

0 (k|r′−r′′|), k is the wavenumber in free
space, H(2)

n is the Hankel function of the second kind of order n, and Jeq(r′) is the equivalent
current defined by

Jeq(r′′) = k2χ(r′′)ut(r′′). (3)
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The incident wave is a plane wave propagating in θ direction and is written by

uin(r; θ) =
∞∑

n=−∞
αn(θ)Jn(kρ) exp(jnφ), αn(θ) = j−n exp(−jnθ) (4)

where Jn is the Bessel function of order n. The scattered wave in far region is written by

us(rs; θ) ∼
√

2j
πkρs

exp(−jkρs)ūs(φs; θ), ūs(φs; θ) =
∞∑

m=−∞
βm(θ) jm exp(jmφs). (5)

The coefficients βm(θ) and αn(θ) is related by so-called T-matrix[8] as βm(θ) =
∑∞

n=−∞ τmnαn(θ).
Using the second equation of (4), we get

βm(θ) =
∞∑

n=−∞
τmn j−n exp(−jnθ) . (6)

From (5) and (6), we know that the measured scattered waves are transformed into the T-matrix
elements.

Let RV be the circular region of |r′′| ≤ b. We define the inner product on RV by
〈f(r), g(r)〉 =

∫
RV

f∗(r)g(r)dr, where the asterisk denotes the complex conjugate, and in-
troduce the orthonormal set of functions with two indices:

ηm,m′(r′′) =
1√

2πcm,m′
Jm(km,m′ρ′′) exp(jmφ′′), m = 0,±1,±2, · · ·

m′ = 1, 2, · · · , I(m), · · · (7)

Here, cm,m′ is defined for normalization as cm,m′ =
∫ b
0 J2

m(km,m′ρ′′)ρ′′dρ′′, and km,m′ are de-
termined so that {ηm,m′} forms an orthogonal set, km,m′ < km,m′+1, and only one coefficient
km,I(m) is equal to k.

Let us suppose that incident waves are given by u
(n)
in (r) = ηn,I(n)(r); (n = 0,±1,±2, · · · ),

and express the equivalent current approximately by

J (n)
eq (r′) ≈

M∑

m=−M

M ′∑

m′=1

ηm,m′(r′) w(m,m′, n) (8)

where w(m,m′, n) is the expansion coefficient. Comparing (1) with (5) using (8) and (6), we
get

w(m, I(m), n) =
2j

π
√

cm,I(m)cn,I(n)
τmn. (9)

From the above, we can see the expansion coefficient w(m, m′, n) as an extension of the T-
matrix, and know that a part of the coefficient w(m, I(m), n) is measured one which is related
to the scattered wave and the others w(m, m′, n); m′ 6= I(m) are unmeasured ones which cannot
be observed from the scattered waves.

We introduce another set of orthogonal functions {ψl} (l = 1, · · · , L) over RV to expand
the object function as

χ(r) =
L∑

l=1

el ψl(r). (10)

The cost functional of the object function and the unmeasured equivalent current is defined by

Ω(e,wu) =
N∑

n=−N

∥∥∥J (n)
eq (r)− k2χ(r)u(n)

t (r)
∥∥∥

2
→ min (11)

where e and wu indicate {el} and {w(m,m′, n); m′ 6= I(m)}, respectively, u
(n)
t (r′) is the total

wave generated by J
(n)
eq (r′′) in RV, and ‖f(r)‖2 = 〈f(r), f(r)〉. We can reduce the inverse

scattering problem to minimization of (11) to find the optimal coefficients e and wu.
At first, assuming that the object e is given, we get a linear equation for unmeasured

coefficients of the equivalent current wu = {w(m,m′, n); m′ 6= I(m)} as
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M∑

m=−M

M ′∑

m′=1
m′ 6=I(m)

A(p, p′,m,m′)w(m,m′, n) = B(p, p′, n), (p = −M,· · ·,M ; p′ = 1,· · ·,M ′) (12)

where A(p, p′,m, m′), B(p, p′, n) are determined from the given object e and the measured
coefficients of the equivalent current.

Next, assuming that the equivalent current is given, we get a linear equation for the
expansion coefficients of the object e = {el} as

w(p, p′, n) =
L∑

l=1

elC(l; p, p′, n), (p = −M,· · ·,M ; p′ = 1,· · ·,M ′; n = −N,· · ·, N) (13)

where C(l; p, p′, n) is determined from the given equivalent current.
Equations (12) and (13) are solved as the linear least-squares problem using the QR

decomposition. The inverse algorithm is summarized as follows:

Step 1: Set the initial value of e.
Step 2: Update wu by (12).
Step 3: Update e by (13), and go back to Step 2 and repeat Steps 2 and 3 until convergence.

3. Numerical Examples
We can know from Parseval’s formula that error in |τmn|2 becomes approximately PN/(NiNs)

when averaged noise-power relative to the power of incident plane wave is PN, where Ni and
Ns are the number of plane wave incidences and that of observation directions of the scattered
wave, respectively. Figure 2 shows the exact T-matrix elements and the reconstructed ones for
a dielectric circular cylinder of radius 0.8λ and εr = 1.8, where λ = 2π/k is a wavelength in free
space, and PN = 10−2, Ni = Ns = 100 are assumed. The T-matrix elements for |m| ≤ 7 and
|n| ≤ 7, which are larger than 10−6, are effective against noise. In this case we have assumed
M = N = 7. The number of independent T-matrix elements becomes 120 in consideration of
the symmetry of T-matrix[9].

The region RV is divided into small cells by D × D(Fig. 1)．Let ψl(r′′) be the pulse
function such that ψl(r′′) = 1 in the l-th cell; otherwise ψl(r′′) = 0, where the cells out of
RV are excluded. The number of cells L becomes 112 for D = 12, and L = 156 for D = 14.
Figure 3 shows the cost functional Ω and the residual errors of the reconstructed object Eχ as
functions of the iteration number; and Fig. 4 shows the reconstructed profiles after 50 iterations.
As seen in Fig. 4(c), if L is smaller than the number of independent T-matrix elements, fatal
profile error due to noise does not appeared. In Fig. 4(d), we can see that profile error increases
because L is larger. From Fig. 4(e), we know that the number of terms of the equivalent current
(2M + 1)×M ′ should be no less than L. The computation time for 50 iterations for Fig. 4(c)
was 50 minutes by Compaq W8000 with Xeon 2.4GHz processor.

4. Concluding Remarks
In this article, we have introduced a T-matrix expression of the scattered wave and ex-

pressed the equivalent current in terms of orthonormal basis functions. Using the expressions,
we have formulated the inverse scattering problem of reconstructing a two dimensional object.
As a result, we can directly connect the noise-removed scattered waves to the measured equiv-
alent current. We have proposed an iterative algorithm that the object and the unmeasured
equivalent current are updated by decreasing the cost functional in the least square approxi-
mation. The algorithm avoids employing a nonlinear optimization algorithm, solving the direct
scattering problem, and using a special additional regularization. Numerical examples show
that the algorithm works well under noisy conditions. An extension of it to the use of multi-
frequencies is a future subject.
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Figure 1: Geometry of the problem.
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(b) under PN = 10−2 noise
Figure 2: T-matrix elements recon-
structed from scattered waves. The radius
of the object is 0.8λ, εr=1.8.
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Figure 3: Residual errors in the equivalent
current Ω and the object Eχ.
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(b) reconstructed from the exact scattered wave,
M = N = 11, D = 14, M ′ = 12
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(c) reconstructed from scattered wave with 10−2

noise relative to the incident wave power, M =
N = 7, D = 12, M ′ = 12
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(d) as (c), but D = 14, M ′ = 12
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(e) as (c), but D = 12, M ′ = 4

Figure 4: Reconstructed profiles after 50 itera-
tions. The original object is of 0.8λ radius and
εr=1.8.
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