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I. INTRODUCTION

In the synthesis of the continuously distributed line source antennas with arbitrary patterns,
the formulas of Taylor sum pattern[1] and Bayliss difference pattern[2] have been mainly
used. In this paper, an optimization scheme is newly presented to directly synthesize the
desired line source difference patterns from Taylor line source sum pattern formula. In the
scheme, the relationship between the difference pattern and the source distribution function is
analytically established, and then the distribution is numerically adapted to the specified
difference pattern by using an appropriate iterative sampling method. For showing the
advantage and usefulness of this scheme, the scheme is applied to the one-dimensional
inverse scattering problem compatible with the line source synthesis problem. For example, the
corrugated coupled-line coupler which all port impedances are same can be easily designed by
the proposed scheme. The reason is that the coupling factor of the nonuniform coupled-line
coupler is corresponded to line source space factor and the modal impedance profile is
corresponded to the distribution function[3]. The results also show the generality of the design

method for the nonuniform transmission lines with the arbitrary reflection properties.

II. SAMPLED FORMULA OF LINE SOURCE PATTERN
Let the line source have a distribution function g(p). Then the related space factor pattern

F(u) is given by the following Fourier transform relationship[1].

FG)= [ g(p)exp (—pudat (1)

Expanding the g(p) as g(p)= g:o(a,acos(np)+bnsh1(np)) by the Woodward's idea [4],

F(u) can be rewritten by the restricted set of sampling functions as follows:

N N
F(u)= mz_:oiran(Sa(?r(u—n))+Sa( wu+mn)) —j Zlﬂ'b,,(Sa(?r(u—n))—Sa(:r(u+ n)) (2)
where F(n)=n(a,—jb,) and F(0)=2ra, The real and imaginary parts are even and
odd uz, respectively. The problem we now are considering is how to take full advantage of

F(u) for patterns with arbitrary lobe heights for cases not only sum pattern but also
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difference pattern. We introduce the Taylor line source sum pattern[l] compatible with F(z)
for lobe control, and then modify it in order to activate the case of b, 50, based on the

Orchard’s ripple-making theory [4]. The result is as follows:

Uyt Uy

F(u)=A"- Sa(mu) - n:’@m( znz 2)(1_ u )(1+—2‘—), 3)

whose real and imaginary parts are even and odd in the entire # domain, respectively. That
is, F(u)=F.(u)+jF,(u) where F,(0)=0. Thus, the framework of eq.(3) is consistent
with that of eq.(2). Here, 2, is the null or dip position in the # domain. v, cause a dip in
position, which creates ripples. #, and v, are optimally perturbed for | F(u)|, which has
the individually prescribed N lobe heights with the furthest lobes exponentially decaying in
level according to the coefficient A. For a difference pattern, it is required that F(0) =0
and F(z) have no deviation against the regular pattern at #«7(0. Thus, F.(z) must
become odd for F.(0) = 0. Once the alteration is done, F,(z) must become even and then
the position of two derivations must be interchanged to maintain the framework, which is
consistent with the need to have g(p) be real. Letting the altered F(z) be FA(M)=
FAu)+jF2(u) and defining F' (u#)=;F%(u) vield F(x)= —F*(u)+;iF2(u).

After some algebra on the even <> odd alteration in eq.(2), the following relationships are

derived:
FMu)=F,(u)+D,, (4)
FMu)=F,(u)—Dy—D,, 5)
where
Dy = 2nay + Sa(nuw), (6)
D1:2ﬁﬁl b, Sa(m(u—mn)), (7)
Dy=2rx i:l a, - Sa(mlu+n)). (8)

In eq.(5), the subtraction by Dy removes the numerical problem found in the constant A in

the case of difference pattern. Thus, the following relationships are obtained:

F(u)—g(p)= i:n( a,cos(np)+ b, sin(np)), for sum pattern, (9)

F(uw—g(p)= 2:1( b cos (np) + atsin (np)), for difference pattern, (10)
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where b and @ are the updated b,(=—F,(n)/7) and a,(=F,(n)/z) of F(u) which

contributes to a prescribed |F’ ().

III. APPLICATIONS

The error function for null positions adapted to the prescribed lobe peak values is defined
by the least square method and the iteration for the minimization goes along with the
conjugate gradient method. Fig. 1 shows the sum and difference patterns calculated by eq.(9)

and eq.(10) in the case that &,=0(. Here, first and second sidelobes are prescribed to -20 dB
and N=3. Fig. 2 shows the example of activating v, (m=4) for prescribed difference

pattern with ripples in the case that N=7. For applications to the inverse scattering problem,
let us consider the corrugated coupled-line 3-dB bandpass filter along the z axis at 6.5 GHz,

aimed at making all ports match the Z,=5082 system. The adopted lobe peak values of
|F" ()| are (0.13, 0.1, 0.1, 0.1, 0.1, 0.883, 0.1, 0.1) for N=8. The first lobe height has been
chosen for the condition Zy.(2) > Z, which has to be satisfied for the physical realization of
coupler. The even mode characteristic impedance Z,.(z) is synthesized from the g(p) of

eq.(10), because | F"(«)| indicates the coupling factor C in the symmetric coupler under the

condition Zy=V Z.(2) + Zy,(2) [3]. The overlay optimized by the spectral domain approach
was applied for the mode phase velocity compensation. The frequency characteristics are
calculated by the usual coupler analysis and then the frequency centering is achieved by the
optimization of the coupler length. The coupler was implemented on FR-4 substrate

(e,=4.7,h=1mm) and the calculated length is 6.7cm. The calculated results are

compared with measured results in Fig. 3, showing good agreement.

IV. CONCLUSIONS

An optimization scheme was newly presented to directly synthesize the desired line source
difference patterns from well-known sum pattern formula by developing the generally updated
Fourier transform pair. The scheme can be easily applied to the one-dimensional inverse
scattering problem. For application, the corrugated bandpass coupler with the specified
coupling pattern was designed. The modal characteristic impedance profiles are corresponded
to the line source distribution.
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Fig. 1. Sum and difference patterns simulated by the developed scheme.
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Fig. 2. Synthesized examples of difference patterns with ripple.
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Fig. 3. Frequency characteristics of designed corrugated coupler.
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