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1. Introduction

This paper presents a further development of analytical-numerical approach to the three-
dimensional problem of wave propagation in the presence of localized irregularity. The word
“localized” means that it is limited in extent in both directions - longitudinal and transverse to
propagation path. If the irregularity is small in comparison with wavelength, then its influence
may be evaluated by using first-order perturbation technique or directly numerically. In the case
of an inhomogeneity of infinite lateral extent the problem may be treated with the aid of the well
known two-dimensional mixed-path approximation. Quite different the case of the large-scale
inhomogeneity which is limited in transverse direction. Then the three-dimensional effects are
significant and an efficient and accurate approach is required for their proper account.

In order to illustrate the productivity of the developed technique we focus here on a par-
ticular application of the problem and consider the VLF radio wave propagation influenced by
a localized ionospheric disturbance. For some recent years there were numerous papers deal-
ing with the modelling of VLF propagation in the irregular Earth-ionosphere waveguide (e.g.
(1], [2}). There were also many earlier attempts to develop an efficient numerical procedure to
evaluate quantitatively the effect of a localized inhomogeneity of terrestrial wavegude on both
subionospheric and ground wave propagation. The ample list of relevant references may be
found in our paper [3] and their detailed survey provided us with the motivation for the current
study. Unlike the most of earlier investigations our theory proceeds from more realistic model of
the irregularity as we characterize the non-uniform boundaries of the guide by inhomogeneous
surface impedance function. Another distinctive feature of our approach is the employment the
asymptotic technique which allows to facilitate the computations and retains in account the
finite lateral extent of an inhomogeneity.

2. Model and formulation

Let us consider the three-dimensional domain D bounded by two impedance surfaces S, and
S; one of which is non-uniform. The surface S, is defined as z = 0 and the surface S; is formed
by the plane z = h and by the truncated cylinder of the height h, standing on this plane and
protruding inside the cavity of the guide. The lateral surface of cylinder S; and its base S, are
characterized by the impedance values §; and &, respectively.

The harmonic (e~**) point source which excites the waveguide cavity D is assumed to be
a vertical electric dipole. Therefore, in the scalar approximation the electromagnetic field may
be characterized by the vertical component of Hertz’s vector II(z,y, z). The unknown function
I(z,y, z) obeys Helmholtz’s equation and the following impedance boundary conditions:

2O = k8(M) s, s

where: k = w\/feqfio, (M) = 8. f M € S, 6(M) = & if M € S;\(S5, U 8)), 6(M) = &, if
M € S,, and §(M) = 6 if M € S;. We point out here that in practice for such field polarization:
|8e,ip] < 1and |6i] > 1.

3. Asymptotic procedure
The slowly varying attenuation function V is defined as follows:
Po eikr

O(r,p,2) = %TV(", ®,z)
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Using the second Green’s formula we may relate the unknown attenuation function V(R) and
the attenuation function for uniform waveguide Vi(R) by the following integral equation:

tkr 1 VL(R,R) eik(r'+r1—r)
V(R) = V(R > ' neTt T
(R) = Va(R) + 5 // {, R o }V(R)V(RR) S+

tkr ] 1 ary aVa(R, R’) ,
// {%(R R) an’ T ikor ory + (1 B H) Vo(R, R )]} x

OV(R') 1 ] R
X { Ean T (1 ) V(B )} BN )

rr

where: R(r,¢,2) ¢ (5,US)) - observation point, R'(r, ¢, 2') € (S, US)) - integration point, n’ -
normal to S; directed outside from the cavity of the guide, and r; = /r2 42 — 2rr'cos(p — ¢').
In the limit case R € (S, U S) an additional item V(R)/2 arises in the formula (1) due to the
discontinuity of the normal derivative of Green’s function IIj(R,R')/8z' or 8l4(R,R’)/87’.

The key point of the theory is the asymptotic evaluation of integral over S, with the aid of
stationary phase method, We introduce the elliptic coordinate system on the surface S, [4] and
substitute the variables of integration:

v = flchu+cosv] 1y = §lchu— cosv] —00 < u < 400
t' = §chucosv y' =S shusiny 0<v<n

Taking in account that dS’' = r1r'dudv, we may rewrite the first integral in (1) as follows:

1k(r +ry —r) us(v) 3
/] FRR)——4d // F(u, v)e'kr(d'" Ddudy = /" (/ >( | f(u,‘u)e'kr(d'"'l)du) dw
v uglv

where the functions u«(v) and us (v) specify the boundary of perturbed area in elliptic coordinate
system. Performing some more preliminaries:

us (v) o 50
/ du= ...du—/ ...du
uc(v) uc(v) us (v)

we assume kr 3> 1 to be the large parameter of the problem and indicate the slowly varying
part of the integrand f(u,v). Following [5] or [6], we write out the complete expressions for the
first two terms of asymptotic expansion [7):

exp{ikr[chuy(v) —

1 2kr

) Dt = D Gluyo), o] + Ol(kr)

up(

where:
fle(v), ]
chu(v)/2]
= \/2krsh|[u(v)/2], and the function w(z) = e~ (1 + 723; et dt) is the conventional proba-
bility integral of a complex variable.

Using the formulas above we can deduce that the remained integral with respect to v may
be represented as contour integral along the boundary of inhomogeneous area:

Glu(u), o] = VAES =10, o)uleMp) + | £(0,0) -

RR)T (ikrlch u(v)-1]} Glu(v), vldu+O[(kr) /2] (2)
//f( 7 z%fspezpzrc u(v u(v), vjdu T

rry

The asymptotic formula (2) is more accurate than that from {4], as it completely incorporates
the second term of asymptotic expansion O(1/kr). The proposed contour integral representation
proves to be much more convenient for numerical implementation.
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4. Numerical algorithm

In order to gain the most benefit from the performed asymptotic integration, we use the
algorithm which combines both inversion and iteration procedures. Let us represent the integral
operator in our asymptotic integral equation as the sum of three items V = Vy+ AV + BV +CV,
where A is the integral operator which acts on the function f(0,v), B is the integral operator
which acts on the function f[us(v),v], and C is the second item from (1). We point out that
A is the Volterra integral operator and it can be easily inverted with the aid of conventional
stepwise procedure. Moreover, it contains the first, dominant term of asymptotic expansion. In
comparison with B its contribution to selution is expected to be as more significant as large the
value of parameter kr. Furthermore the numerical calculations performed for the case of small
irregularity (8] exhibited the insignificant contribution of the second integral over S; in (1) to
the diffracted field in comparison with the influence of S;. Thus we find the following algorithm
to be the most judicious [9], [10]:

vO =y, VO =v+ AV 4 BYE-) Loy} =123,

where n is the iteration number. The Volterra integral operator A is inverted directly during
each iteration, and the remained operators B and C are inverted by successive approximations.
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5. Results and discussion
We simulated VLF (12.1 kHz) radio wave propagation in terrestrial wavegude using the

parallel-plane model introduced above. The spatial behavior of the modulus and argument
of the attenuation function V (longitudinal diffraction patterns) is illustrated at the figures.
Both transmitter and receiver are assumed to be on the Earth’s surface, where their Cartesian
coordinates are : {z; = 0,y = 0}, {1300 < z, < 2200 km,y, = 0}. The elliptic cross section of
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the cylinder [(z — z,)/a)? + [y/b]> < 1 is characterized by the values z, = 800 km, a = 200 km,
b = 500 km (upper plots), and a = 500 km, b = 200 km (lower plots). The waveguide height
h = 59.8km and the impedance values § = 0.4965 + 0.2215¢ and &, = 0.2364 + 0.2698{ were
calculated using the ionosphere height profiles taken from [11]. Other parameters of the model
are: hy =0 km or h, = 9.2 km as indicated on the figures, §, = 2.9(1 —1)107*, § = 1.0(1—1)10%.

The presented diagrams allow to conclude that the localized irregularity causes the complex
scattering mechanism. One may also observe that the convexity of the irregularity (h, # 0)
substantially affects ficld behavior.
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