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1. Introduction

Radiation pattern of the circular aperture can be calculated by
integrating the aperture distribution. And various distributioms for
suppressed sidelobe have been proposed, for example, Taylor distribution(l).
The previous studies focus on the maximum sidelobe level, that is, first
sidelobe level.

On the practical point of view, however, it is important to suppress the
sidelobe level in the offaxis region away from the first sidelobe, because,
for example, CCIR recommends the 3dB lower sidelobe (29-2510g6) in one to 20
degree offaxis region than the other regiom for satellite communication earth
station antennas. And the aperture distribution with the suppressed first
sidelobe does not necessarily exhibit the low sidelobe in the wide angle
region.

This paper presents the approximate expression for the sidelobe peak
envelope for circular aperture with center blocking. The comparison with the
results from the direct integration is T
shown for various distribution and ¢ P
shows the validity of the expression. v
Although similar expression may be ol kD

PR . . . (]
known empirically, this paper will give
the theoretical background and general
expressions for arbitrarily
distribution and provide the measure .
for the design of the aperture antenns.

Fig.l Aperture with blocking

2, Approximation of the Imtegral

Let the point on the aperture be (I,4¢) as shown in Fig.l, then the
radiation pattern at the # offaxis point for the aperture with the diameter D
and the center blocking diameter YoD (03V1:<{) can be calculated by the
following integral.

o= 4
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Where,
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W= (ED/A)SiLE (2)
and f(r), (0£r=1 ) is the aperture electric distribution function and is
supposed to be normalized so that averaged electric field on the aperture may
be unity.
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The following integral formula is applied to Eq.(l).
Sr"'J,._, (ur) dr = Ii- Y™ In (ur) (4)

And on the assumption that & is large, the integral in Eq.(1l) is expanded
by partial integral,
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Where,” is the order for the lowest non zero derivative, that is,

{0}{') {(1}(1)_ e f(h l)() 0 {(ﬁ(,]mo
Applying the asymptotic expansion for Bessal function
o 2 (!
Inlt) = ij cos (u 2+T)fr,) (e large) (6)

and empirical approximate expression
T(wy= (I- o.s’e"z“r')‘/fﬁ—r; cos (ur- 32+ 5 ©454r)  (0<un)
to Eq.(5) and substituting it into Eq.(l), we obtain
I
= e - 1 = 3 T p-~0.55urs
g (w)= 2 Shf(rj Twnrdr = M cos (u-dw+d)—Neos(ur-Fu+Fe ) (8)

where,

n (n + 2_ v
M= [[ﬂ.)]u[f‘wi”] +2f00 2 (- uncostzcr;_ir-ﬁf)]& (9)
N=§(n)-‘@(~%—; (1= G g @—2ule) (10)

3. Peak Envelope Functiom
From Eq.(8), peak envelope function Ze (4) can be written as follows.

3, (W) = M+ N |cos (un-Fn+Fe-o5ur) (11)

Taking 20log of the above expression, we obtain the following equation.
Let @ be the angle in degrees,

(7)

1) When f(1)%0 and f'(1)%0, (% =1)
20 log e = 41-9 - 30 log 2 + 20 log £( = 30 log &

+2o[og{ H[%TL]?
£(r) -2Ure 0__ lT,_ -0.55ure
+ T (% (1-08€ ) |cos (ur-dr+Le ) } (e}

~ 41,9 - 30log-2 +20log f() ~ 30 log 8
+20log [ 1+ )&T‘?J?,Jcos(un—%m)ﬂ o (u—arge)
II) When F(1)%0, f/(1)=0 and T"(1)%0, (M =2)
20l099e = 41.9 - 30 log-2 + 20 log fa)~ 30log @

(I-b)

«zobe {1~ 44
+ 'i((rlo))m (I- 0.8 €724%) | cos (ure- _&7,:.,, e»osswo)l] ()
~ 41.9 - 30 log e+ 20 log £¢1) - 30 leg 6
f(ro)

"%'“)]], (w—large)  (11-b)

+20[og[i+ Tl
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III) When f(1)=0, f'(1)%0, (7 =1)
20 leg Ye= 41.9 - 30 lﬂs—g - 30leg @

+20 log 5-%(')
+ f(ro) [res (1~ 0.8€77%")

~ 4].9 - 30 |93-[;-;'-’\-- 30log6 + 20103 ($¢ro)/Fs | cos (u.ro—%-'ltju (a?_’;::;’e)(lll-b)

cos (Uro= %'Jt + % @ aRun) [] (II1-a)

IV) When f(1)= f'(1)=0, f"(1)%0, (M =2)
20 log Je= 41.9 - 30log % - 30 logb

+20 log | ‘(:E'f
+ 3(( o) m ([.. 0.9 e-iﬂ.}'-) l s (uyc L _3:_% -+ % e-d-ﬂah} i‘} (IV—a)
~ 41.9 - 30 log 2 — 30 log 8 + 20 log [ ()7 |cos (ure- 3a) U Yo #0 y (IV=b)

U:large
From the approximate function derived above, the following general
characteristics are obtained.
(1) Fundamental angular dependence of the peak envelope is in the wide angle

region is
=301log8 . (6 in degrees)
(2) The peak envelope has uniform factor corresponding to the normalized
aperture edge level (pedestal level)
20 log £(1)
Therefore, if the edge level is decreased, the peak envelope is decreased
by the same amount uniformly (in the case without center blocking).
(3) In the near axis region peak envelope is raised by the factor
fUD/u or £y fu?
corresponding the derivatives of the distribution function.
Therefore, in order to improve the near axis sidelobe, small value of the
derivative is effective.

4. Comparison with the Direct Integration

Fig.2 to Fig 6 show the comparison of approximation function with the
result from the direct integration Eq.(1) for various distribution.

Fig. 7 shows the case for actual aperture distribution calculated for the
Cassegrain antenna including the subreflector scattering effect. In this case
the peak envelope function expresses the outline of the actual sidelobe.

5. Conclusion

The peak envelope approximate function is derived amalytically. For
analytically expressed distribution function, the envelope function
coincidents well with the peak envelope calculated by the direct integratiom,
except the first sidelobe. For the actual distribution, the envelope function
well expresses the outline of the actual peak envelope.

The peak envelope approximate function presented here will provide the
simplified means for the estimation of the sidelobe performance and the
measure for the design of the aperture antenna.
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