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Traditionally, inverse scattering problems treated using an exact
formulation have been viewed as being so ill-posed that their solutions are
rarely practical in '"real-world" applications. Several years ago, in work that
has not been published, the author derived some rather simple relations which
pinpointed where the ill-posedness occurs in this solution, and which indicated
that the physical requirement that the source be of finite size ("compact
support") should be a sufficient constraint to remove the ill-posedness. These
relations did not result in an evident method for implementing a stable numerical
solution. This paper begins by reviewing these results. It is then shown that
the solution to the inverse scattering problem as formulated is mathematically
the same as a common problem in digital image restoration. Indeed, there are
also some interesting physical parallels between the two problems. Using results
from this field, it is shown that a solution in the minimum mean square error
sense exists, and that this solution is both inherently well-posed and
numerically efficient and stable. A second formulation, which permits any
additional constraints which are known a priori to be readily incorporated, is
also presented. Because of space limitations, many important aspects of the
results cannot be treated in detail. Interested workers are urged to contact the
author for additional information.

In an inverse scattering problem, the fields in the inhomogeneous wave
equation are assumed known by measurement, and it is desired to solve for the
source term. The source term may represent an actual source distribution, or it
may include equivalent sources produced by illuminating a scattering object with
an incident, or probing, field. In the latter case, the incident field is assumed
known. Although this paper uses scalar notation, all of the results presented
have been shown to apply to the general, full vector field and tensor medium
quantities. Consider a source p(x4J) in a domain D bounded by a surface S. Then
the time-harmonic field, @(x,w), due to p(x,w) is the solution to the
inhomogeneous wave equation

v ¢ o= -p (1)

where k = 2m/A. @(xe0) is measured over some surface enclosing the source, and
the purpose is to determine p{x,). If n(x,w) is the complex refractive index
of a scattering region, then the equivalent source is

plx) = «° [NZ(X) - 1] o(x) (2)
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The basic exact integral equation approach to this problem considered in this
paper was derived in reference [!], and, in a different form, in reference (2]
(see also reference [3]). Let a field quantity @y be defined by

2,0 = fo§ G*vo-0r6") (3)

where G" is the complex conjugate of the free space Green's function. This equation
is the mathematical statement of the field that is reconstructed from a hologram
recorded on the surface S. Because it depends only on the field which can be
measured over the surface S, it is known. Using this field, the following
integral equation can be derived [l, 2, 3}:

@, = 21 oV IM6(xx) px)  + O ) (4)

where Im G is the imaginary part of the Green's function. This integral equation
must be solved for p . This is a Fredholm integral equation of the first kind,
which is often identified as inherently ill-posed.

The nature of the ill-posedness, and why the compact support of o should
permit this to be overcome can be shown as follows. Without loss of generality,
the incident field term will be dropped from equation (4) in what follows. Let a
superscript tilde denote the spatial Fourier transform of a function. Then,
noting that the integral in equation (4) is convolution and denoting the
imaginary part of G as G, the spatial Fourier transform of equation (4) becomes

® =21 Gp (5)
and the obvious solution is
7= D@6, (6)

Unfortunately, G; contains many zeros. Unless OH goes to zero at the same points
at least as rapidly as does G, this solution contains singularities.

It can be shown that, theoretically, © should not contain singularities. A
completely rigorous proof of this requires more space than is available, because
of the care which must be paid to the elements of the theory of distributions
involved. However, the proof is easily outlined. Let © be of compact support,
and let it be assumed that 5 is singular. It follows that G can be written as
the sum of a nonsingular part and a part containing all of the singularities.
Furthermore, these singularities can be written as a summation over the points in
the (transform) domain at which they occur, with the singularity at each point
written as the product of some weighting function times a delta distribution
(and/or derivatives of delta distributions). Because of the linearity of the
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wave equation, it follows that the part of p containing all of the singularities
is the inverse spatial Fourier transform of this summation. But p , and, in
particular, the singular part of p, must be of compact support. However, the
inverse spatial Fourier transform of the summation over the delta distributions cannot be of
compact support, by the nature of the transform of such a distribution. Thus,
the assumption that J contains a singular part must be false. It follows that
wherever the denominator of equation (6) goes to zero, the numerator must go to
zero at least as rapidly. When this does not happen, it must be due to errors
(noise, numerical errors, sampling effects, etc.) in the numerator.

It can also be proven that the solution given by equation (6) should be
well-posed. Let p= p* py , where the second term contains all sources of error. Let a
signal-to-noise ratio be defined as €, where Pyl < eipr . Then, the solution
will be well-posed if the upper bound on p, is < € times the upper bound on , ,
for all points in the solution domain. By a basic theorem of Fourier transforms (4],

gt < fiid ox @)

But I8 l< €11 , and thus

IP,‘Js/f 1Pl =¢f 11 by (8)
Again, using the above Fourier transform theorm, it follows that
|pl < flﬁl DL 9)

Thus, the upper bound on the noise contribution to the solution is { € times the
upper bound on the solution, and the solution should be stable. Using similar
proofs, it can be shown that the spatial derivatives of the source term should be
similarly stable. The definition of signal-to-noise ratio used here is actually
a more stringent one than is required. What it says is that there should be an
upper bound on the noise contribution to each spatial frequency component of the
source term. The proof still holds if the normal, spatial-domain signal-to-noise
ratio is employed, and, using the "energy" theorem for Fourier transforms, an
upper bound for each spatial frequency component is derived. Furthermore, as is
true of all of the relations derived in this paper, a temporal Fourier transform
may be taken over all temporal frequency components to obtain analgous time
domain results.

Unfortunately, while the above discussion indicates that it should be
possible to use equation (6) to obtain a well-posed solution to the inverse
scattering problem, it does not tell how to do this. The theory of digital image
restoration provides one method. The mathematical representation of an image
degraded by a linear process (e.g.,, motional blur) is identical to the form of
equation (4): the holographic field represents the degraded image, the Green's
function is the degrading function, and the source term is the undegraded image.
[Note that there is even a valid analogy to be drawn between the physics of the
two problems: the process of propagation of a field can be viewed as a
"degrading" of the original field. A clear understanding of this analogy
requires a discussion of the {fact that the holographic field is proportional to
the source term itself in the short wavelength limit [5], which is beyond the
scope of this paper.] The technique of minimum mean square error restoration [6]
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will be used. Since the operations of equation (4) are linear, a linear estimate
of the solution is chosen. The problem is then to minimize the error, in the
mean square sense, between the actual value of p plus a noise term, and the value
of obtained by applying a linear operator to the holographic field. The algebra
of doing this requires several pages, but the result [6] permits the linear
operator to be expressed in terms of the knowndata and an estimate of the noise.
The result is a rather complicated matrix expression which would be quite costly
to evaluate. However, the imaginary part of the Green's function in equation (4)
is a Toeplitz (or block Toeplitz) matrix, when discretized. By approximating
this matrix as a circulant matrix, the complete resuit can be reduced to a form
in which only algebraic and fast Fourier transform (FFT) operations are necessary
for evaluation. The result, for two dimensions, is given by

ﬁ(b‘x,l'y) = [@'(ux,ry) @("x"’va/{ rz( ux,vY)lz + [ﬁu("'x‘vv)/ﬁ(”x‘vY)]} (10)

where P and P are the power spectra of the noise (errors) and of the exact solution.
Several important points must be made about this solution. It is always well
conditioned, since although the first term in the denominator is known to have
zeros, the second term can never fall below the ratio of the power spectras. If
the noise goes to zero, equation (10) reduces to equation (6), the solution
originally obtained. As the source power spectrum approaches zero, so does the
solution. This is reasonable, since recovery of information at spatial
frequencies where the source information is dominated by noise is not reasonable.
Finally, it should be pointed out that a related solution can be derived by
minimizing a slightly different quanity, namely, the quanity minimized in
deriving equation (10) but with the addition of a scalar constraint parameter,
(see reference [61] for a derivation):

f"(vxwv) = [‘g'(rx,vy) 6H("X‘VY]/{IE(“X“’V)IZ + ylﬁn("x"‘d 2} (1)

As might be expected from the above comments, it can be shown that an optimum
value of ¥ can be derived from an estimate of the mean and variance of the error
(noise) present in the data. Note that an upper bound to this quanity is usually
known in a real-world measurement.
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