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I. TINTRODUCTION

Multiple scattering of electromagnetic fields by cylinders and spheres
has been studied by numerous authors. The problem of the multiple scattering
by two or many strips is also interesting and of importance for many applica-
tions. Walker W.A. and Butler C.M.[1l] have developed a method for calculating
the scattered fields from large arrays of narrow strips. More recently,

Aoki K. et al.[2] and Iwashige J.[3] have studied the scattering by two
staggered parallel strips by using the Wiener-Hopf technique and the method
of the GTD respectively.

In this paper, the electromagnetic fields scattered by arbitrarily
oriented two parallel conducting strips are analyzed by using the circular-
harmonics expansion. Numerical results are given for the scattered far-field
patterns.

. ANALYSIS

Let us consider arbitrarily oriented two parallel conducting strips as
shown in Fig.l. In the following formulation, at+b<d is assumed and time
factor exp(iwt) is suppressed throughout. The E-polarized incident plane wave
is given by

Einc - olkecos(¢-¢o) @D

where k=Vegug = 27/1 (A: wavelength). We define two circular cylindrical
coordinate systems (pj.¢;,z) and (pp,$2,2z) as shown in Fig.l. Equation (1)
can be expanded in these two coordinate systems as follows:

E:“C ) 3 (ke 1) o1n(d1-¢0) _ 55 § 3_(kp3) oin(42-00) (2)
n=-—o n=-ox
where P(0.9) 4 Y sinc
o, = eti(kd/Z)cos¢0 (3) v o o, 2
2

and Jn is the Bessel function

of the n-th order. '
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Fig.l. Geometry of the problem.
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For convenience, let us define five regions I,0,II,IV and V as shown in
Fig.l. The total field in each region is expressed as follows:

Region 1 (py 2a, ¥y 20 s7H;)
EE = F oAl g (key) si 4
z " nf1 Ay JptkeD) sinnC ey =¥ “)
Region II (p1 2a, -7 < ¢ <91 )
o « 1 .
E, = I, B Jn(kpl) sin n( ¢3 - ¢; ) (5)

Region II (P b, Y2202 87Yy)

m_ 2 . .

E = = nél Al Jn(kpz) sin n( ¢ - ¥2 ) (6)
Region IV (pp &b, TPy < 63 < ¥y )
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E, = L; B J (kp2) sin n( ¢2 - ¥2 ) (7)
Region V (pP12a,p22b)
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where
s1 _ @ 1 (2) ing; s _ % 2 (2) ings,
E," = piw G, H “'(ko1) e s Ef= L C oH 7 (kep) e (9)

are the scattered fields from the strips #1 and #2, respectively, in which
1 1 2 2 1

the multiple scattering effect is included, and A" , B_ , A~ , B, C_ and
2 2) n n n n n
Cn are unknown coefficients, and Hn is the Hankel function of the second
kind of n-th order. By means of the addition theorem of Bessel function,
Ezl and Eiz can be expressed in anothner coordinate system as follows:
=51 _ ® ® 1 (2) imgo
nz ng—m mg—w Cn Hm—n (kd) Jm(kpz) e (10)
S - 2 (2) im¢1
Ez ng-m - Cn Hn—m (kd) Jm(kpl) e . (11)

Thus, in view of Egs.(2),(8),(9),(10) and (ll1), we have two expressiomns for
total field EZ in either coordinate system. The continuity conditions of

electromagnetic fields on the boundaries p;=a and py=b together with the
orthogonality of the angular functions {sin n(¢;-¢;)} and {sin n(¢-¥;)} lead
to the infinite simultaneous equations to determine the unknown coefficients

Ci and Ci . The matrix form of these equations is expressed as follows:

M, M), c! = D,
(12)

Mz; My, c? D,
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where Hij (i,3=1,2) is the infinite known matrix, D1 and D2 are the infinite

known column vectors and Cl and C2 are the infinite row vectors whose n-th
2
elements are Cn and Cn respectively. Equation (12) can be solved numerically

either by a direct matrix calculation or by an iterative process. In the

latter case, multiple scattering can be evaluated iteratively. If the vectors

Cl and C2 can be expressed as follows:

o© -4

1 1 2 2

€= 1 €= 1 ¢ )
£2=1 2=1
where £ is the iteration number, and ch and RCZ are the row vectors whose
1 2 . 1 2
n-th elements are ch and ch respectively, then zc and lC can be
determined iteratively by solving the following equations
1 _ 3
M11¢ = D
M, ¢l =M c? (2=2,3,4,---)
11 2 12 2-1 e
) » (14)
My & = D
M, 2 =M ct (2=2,3,4,° ") .
22 2 21 2-1 R /

IL  NUMERICAL EXAMPLES

Figure 2 shows the scattered far-field pattern. The broken line denotes
the result obtained from the Wiener-Hopf method[2]. The agreement between
them is good. Figure 3 shows the scattered far-field pattern when the
multiple scattering effect is large. The broken line denotes the single
scattering field (multiple scattering effect is neglected). this result shows
the multiple scattering effect clearly.

IV. CONCLUSION

The electromagnetic fields scattered by arbitrarily oriented two parallel
conducting strips are analyzed by using the circular-harmonics expansion and
some numerical examples are given. The present method and results will be
useful for the analysis of the multiple scattering by many strips such as
strip grating of finite elements. The present method is also applicable to
the problem of a cylindrical and beam wave incidence.
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