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1. Introduction 
Recently, for many kinds of complex engineering problems, 

numerical analysis methods have become very useful with the 
remarkable development of the digital computer, especially the 
super-computer. The full-wave or vector analysis is essential 
in the three-dimensional problems especially in the time 
domain. The time-dependent analysis of electromagnetic fields 
has shown its utility not only in clarifying the variation of 
the fields at the transient state but also in gaining 
information on mechanisms by which the characteristics of an 
electromagnetic field at the stationary state are brought 
about. For this purpose, some finite difference methods such 
as the Finite-Difference Time-Domain method (Fo-TO) and the 
Transmission Line Matrix method (TLM) have been proposed. I 
have recently proposed a new method for the vector analysis 
of the electromagnetic field, which is called as the Spatial 
Network Method (5NM). 
For the analysis of some problems involving not only sources 

such as currents or charges and but also quantum effects such 
as superconductivity. It is known that the formulation by 
the vector potential is effective. 50 far, in the numerical 
methods such as the FEM or the BEM, the formulation by the 
magnetic vector potential has been generally proposed, and 
the introduction of the gauge conditions has been discussed, 
especially 1n the eddy current problems. But, for the FD- TO 
and the TLM methods, few studies about adaptation of the 
methods to the vector potential fields have appeared. 

I have already shown that 5NM can be expanded to the 
vector potential fields with Coulomb's gauge condition by 
using not only the magnetic vector potential but also the 
electric vector potential. Also in this formulation, both 
voltage and current variables are defined and the continuity 
law of currents occurs at each node in the network. These 
treatments have the capability of the method to more general 
problems involving complex medium and boundary conditions by 
equivalent lumped elements. The resultant iterative 
computation of the nodule equation at each node is fitted to 
the computation by the super computer. (1)-(4) 
In this paper, it is shown that this treatment of the vector 

potential fields can be easily applied to the lossy fields. 
But, for this purpose the combined treatment of both the 
vector potential field and the scalar potenti al field with the 
Lorentz gauge condition, in that the divergence of the vector 
potential is not zero, is indispensable for the general 
application of the proposed method. By defining 'F' and 'F' 
function for the electric and magnetic scalar field, 
respectively , the relations of both currents and charges to 
both the scalar and the vector fields can be clarified. The 
equivalent networks for the scalar fields are presented.(S) 
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2. Equivalent circuit of vector potential 
The magnetic vector potential A and electric 

potentialS (=-A' by A. J. Stratton) are supposed to 
the following equations, respectively. [2] 

8 S 
V x A ~ a' S + J1.-- ( ~ B ) ( 1 a) 

8 t 

8A 
"1xS ~ - aA - e., -- ( ~ D ) (lb) 

8 t 

vector 
satisfy 

where, Band 0 are the magnetic and electric flux densities, 
respectively. This pa1r of equations also satisfies the 
ordinary relation between the magnetic vector potential and 
the electromagnetic field and has the similar form to 
Maxwell's equation. Fig. 1 shows the three-dimensional lattice 
network used in this formulation. Its structure is same as 
that in SNM far the electromagnetic fields, Therefor the 
lattice point is defined as the node where the continuity law 
of currents occurs and the line between nodes is supposed to 
be a one-dimensional transmission line in which the TEM wave 
propagates. Table I presents the correspondence between the 
vector potential quantities and the equivalent circuit 
variables at the six kind of nodes in the lattice network. 
These nodes are classified into two types. One ~s the 
electric node at which each component of the magnetic 
vector potential is defined as a voltage variable, and 
the other ~s the magnetic node at which each component 
of the electric vector potential is defined as a voltage 
variable. All circuit variables at the magnetic nodes are 
identified by the symbol " ." because of the duality of their 
physical meaning, as compared with their interpretation at 
the electric nodes. The resultant positions of the vector 
potential variable coincide to that of the electromagnetic 
fields expressed as conditions in (la) and (lb). 

In each fundamental cubic, for an example, plotted by the 
dashed and chained lines in Figure 1, the conditions about the 
divergence of the magnetic vector potential and electric 
vector potential are defined, respectively. For the former, 
the following Lorentz gauge condition can be defined. 

80 
'V-A ~ -e, J1.---J1. a0 ~ -J1. F, (2 - 1) 

8 t 
For the latter, the similar condition can be supposed. 

80 . 
V - S =- e.,J1o-- - eo o· t/J ., =- e.,F· . (2 - 2 ) 

8 l 
where, t/J and 0 ~ are the scalar electric potential and the 
scalar magnetic potential, respectively. 0 and o' are the 
conductivity for electric currents and magnetic currents, 
respectively. The variables 'F' and 'F o

, and electric and 
magnetic field variables are defined as follows by using the 
analogy to the relation among the velocity potential and the 
pressure and the particle velocity in the sound field. 

F 
80 80 . 

e,--+ a 0 
8 t 

- "10 

(3 - 1) 

(3 - 2) 

F' 
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J1.-- + a' ¢ . 
8 t 

- V 0 . 

( 4 1) 

(4 2 ) 



As the difference interval 
lattice network satisfies 
vector potential variables. 

becomes sufficiently small. 
the next wave equation for 

the 
the 

a' 
- "'Po - 

at' 

a 
- Lu., (J + e, 0') 

A A [-1- 00 ·[-1 [Po~ _ l 
s s a t s s '" 1 • 

( 4 ) 
here J and J' are the electric and magnetic current sources, 
respectively. 

For the scalar fields, the following characteristic equation 
can be supposed by using the relation of (3) and (4) . 

o E s a H s 
- VF £o--+ oE s ( 5- 1 ) - V F ' = ),4--+ 0' H s (6 - 1 ) 

a tat 
a F a a F·a . 

- v- E s = ),4---- ( 5 - 2 ) - V-H s £ 0---- ( 6 - 2 ) 
a t e. at Po 

In above each equation, the suffix s i ndicates scalar 
fields. P and o . are the electric and magnetic charges, 
respectively. The equivalent circuits for these equations 
are shown in Figs. 2 and 3, and Table II presents the 
correspondence between the scalar potential quantities and 
the equivalent circuit vari ables. The network satisfies the 
following wave equations when the spatial difference 
interval becomes sufficiently small; 

- e. Po~ [~-1 -~ [Po "-~-1 F 
V' [--1 fI • ( 7 ) 

F· a t 2 F' a t 

V' [~~1 - eOJ4~ [-=-~ ] -~ ( 8 ) 
a F H s a t &, u ' H s 

3. Conclusion 
The spatial networks for both the vector potential fields 

and scalar potential fields with the Lorentz gauge condition 
are presented by defining 'F' and 'F " functions and by using 
the conductance elements and involving the current or charge 
sources. Application of this treatment to concrete problems 
is now being studi ed. those results will be reported in later 
papers. 
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EQUivalent circuit for 
magnetic scelar field . 


