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Abstract

In this paper we propose extrapolated absorbing boundary
conditions (EABCs) based on the cubic-interpolated pseudo-
particle (CIP) method for solving electromagnetic problems
by using finite volume time domain (FVTD) method. Extrapo-
lation of fields at the boundary of the computational region is
performed on the basis of time-splitting of the wave equation
into two equations; one is the advection equation and the
other is an equation including non-advection terms. Numerical
calculations are carried out for checking numerical accuracy
of the present method.

1. INTRODUCTION.

With the rapid development of high speed and large memory
computers, the finite difference time domain ( FDTD ) method
have been widely used, since Yee first proposed the algorithm
[1]. Because of the finite memory sizes of computers, we
have to realize virtual computational spaces by introducing
absorbing boundary conditions (ABCs) [2]. In the earlier
times, Mur’s ABCs [3] were used by many researchers, but
it is inevitable for this type of ABCs that some amount of
fictitious reflections are always observed. As is well known,
PMLs were successfully introduced by Berenger [4] to
overcome this difficult situation.

ABCs based on PMLs are excellent, but a lot of computer
memories are needed to implement them on computers. We
proposed the EABCs in a very compact form [5], where a
boundary field is extrapolated in terms of the linear combi-
nation of the fields at the two inner points adjacent to the
boundary. In case of 1D, it has been demonstrated that the
accuracy of the EABCs is nearly the same order as PMLs and
it requires much less memories than the PMLs. However, basic
theory of EABCs has not been clarified, and its accuracy has
not been checked compared with that of PMLs in case of 2D
and 3D.

In this paper, we first discuss the basic theory of EABCs
from the view point of the CIP method which has ingeniously
utilized the essence of the advection type of wave equation
[6], [7]. Next, we propose EABCs for FVTD method where
the boundary fields are extrapolated by using the interpolated
fields in terms of the three inner points including the boundary.
Finally we show some numerical examples for checking the
accuracy of the present method.

2. BASIC EQUATIONS.

The Maxwell’s equations are written as follows:

∇× E = − ∂

c∂t
H̃

∇× H̃ = +
∂

c∂t
E

(1)

where we assume that the medium is lossless andc = 1/
√

εµ
is the light velocity. The magnetic field is normalized by the
intrinsic impedance of the medium as follows:

H̃ =

√
µ

ε
H (2)

Splitting each field component into two terms as Berenger
did [4], the Maxwell’s equations are rewritten as follows:

∂

c∂t
H̃xy = − ∂

∂y
(Ezx + Ezy)

∂

c∂t
H̃xz = +

∂

∂z
(Eyz + Eyx)

∂

c∂t
H̃yz = − ∂

∂z
(Exy + Exz)

∂

c∂t
H̃yx = +

∂

∂x
(Ezx + Ezy)

∂

c∂t
H̃zx = − ∂

∂x
(Eyz + Eyx)

∂

c∂t
H̃zy = +

∂

∂y
(Exy + Exz)

(3)

∂

c∂t
Exy = +

∂

∂y
(H̃zx + H̃zy)

∂

c∂t
Exz = − ∂

∂z
(H̃yz + H̃yx)

∂

c∂t
Eyz = +

∂

∂z
(H̃xy + H̃xz)

∂

c∂t
Eyx = − ∂

∂x
(H̃zx + H̃zy)

∂

c∂t
Ezx = +

∂

∂x
(H̃yz + H̃yx)

∂

c∂t
Ezy = − ∂

∂y
(H̃xy + H̃xz)

(4)

Adding and subtracting the above two equations, we have the
advection equations with non-advection terms in the right hand
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sides as follows:
∂

c∂t
(Eyx ± H̃zx) ± ∂

∂x
(Eyx ± H̃zx) = ∓ ∂

∂x
(Eyz ± H̃zy)

∂

c∂t
(Ezx ± H̃yx) ∓ ∂

∂x
(Ezx ± H̃yx) = ± ∂

∂x
(Ezy ± H̃yz)

(5)

∂

c∂t
(Ezy ± H̃xy) ± ∂

∂y
(Ezy ± H̃xy) = ∓ ∂

∂y
(Ezx ± H̃xz)

∂

c∂t
(Exy ± H̃zy) ∓ ∂

∂y
(Exy ± H̃zy) = ± ∂

∂y
(Exz ± H̃zx)

(6)

∂

c∂t
(Exz ± H̃yz) ±

∂

∂z
(Exz ± H̃yz) = ∓ ∂

∂z
(Exy ± H̃yx)

∂

c∂t
(Eyz ± H̃xz) ∓

∂

∂z
(Eyz ± H̃xz) = ± ∂

∂z
(Eyx ± H̃xy)

(7)

3. CIP METHOD FOR SOLVING ADVECTION EQUATIONS.

All equations in Eqs.(5), (6) and (7) are reduced to one of the
following two advection types of equations with non-advection
terms in the right hand sides:

∂

c∂t
Φp +

∂

∂ξ
Φp =

∂

∂ξ
Ψ1

∂

c∂t
Φm − ∂

∂ξ
Φm =

∂

∂ξ
Ψ2

(8)

The first equation shows advection in the plusξ-direction (p),
and the second shows advection in the minusξ-direction (m).
According to the CIP method, we can solve these two types
of advection equations approximately by the method of time-
splitting [7] described in the subsequent discussion.

At the first stage, we neglect the non-advection terms in
Eq.(8), and then we have the following homogeneous advec-
tion equations:

∂

c∂t
Φp +

∂

∂ξ
Φp = 0

∂

c∂t
Φm − ∂

∂ξ
Φm = 0

(9)

As is well-known, the above advection equations have solu-
tions expressed asΦp = f(ct− ξ) andΦm = g(ct+ ξ) where
f(ξ) andg(ξ) are arbitrary continuous differentiable functions
with respect toξ. As a result, the value ofΦp at t = τ+∆t and
ξ = a agrees with that att = τ andξ = a−c∆t. Similarly, the
value ofΦm at t = τ +∆t andξ = a agrees with that att = τ
and ξ = a + c∆t. If Φp,m are given in a discrete form, we
can estimate their values in terms of interpolation. It should be
noted that two points and two values, that is, field intensity and
its derivative, at each point are used for interpolation in the CIP
formulation. This is the basic idea of CIP [7]. Contrary to CIP,
however, in case of FVTD it is difficult to use the derivatives of
field components for field interpolation. This is why only the
field components are computed in this FVTD method. In this
paper, we use the Lagrange’s method to interpolate the inner
fields at one time-step in order to extrapolate the boundary
fields at the next time-step.

Now we discretize the functions in Eq.(8) both in time and
space as follows:

Φn
p,m(i) = Φp,m(n∆t, i∆ξ)

n = 0, 1, 2, · · · i = 0,±1,±2, · · · (10)

Then, as is stated before, interpolation in the advection equa-
tions leads to the following solutions:

Φn∗
p (i) = Φn

p (i) + ∆
(+ξ)
adv Φn

p (i)

Φn∗
m (i) = Φn

m(i) + ∆
(−ξ)
adv Φn

m(i)
(11)

wheren∗ is an appropriate time-step parameter withinn+1 >

n∗ > n and the increments∆(±ξ)
adv Φn

p,m(i) are evaluated in
terms of Lagrange’s interpolation as follows:

∆
(+ξ)
adv Φn

p (i) =

M−1∑
k=0

wk(x0 − c∆t)[Φn
p (i − k) − Φn

p (i)]

∆
(−ξ)
adv Φn

m(i) =

M−1∑
k=0

wk(x0 + c∆t)[Φn
m(i + k) − Φn

m(i)]

(12)

whereM is the number of sampled points for interpolation.
Moreover, the Lagrange’s weights are given by

wk(x) =

∏′M−1
j=0 (x − xj)∏′M−1

j=0 (xk − xj)
(k = 0, 1, 2, · · · ,M − 1)

(13)

where
∏′ means that the product atj = k is excluded. It

should be noted that we have chosen asM = 3 for numerical
computation of the Lagrange’s interpolation.

At the next stage, based on the time-splitting approximation,
we include the non-convection terms in Eq.(8) by solving the
following equations [7]:

∂

c∂t
Φp =

∂

∂ξ
Ψ1

∂

c∂t
Φm =

∂

∂ξ
Ψ2

(14)

In the FVTD formulation, no derivatives of field components
are computed, although the right hand sides of Eq.(14) include
them. So we follow the procedure that we first interpolate the
field components and then we take their derivatives. Thus, the
differences in time domain lead to the approximate solutions
to Eq.(14) as follows:

Φn+1
p (i) = Φn∗

p (i) + ∆(+ξ)
non Ψn

1 (i)

Φn+1
m (i) = Φn∗

m (i) + ∆(−ξ)
non Ψn

2 (i)
(15)

where

∆(+ξ)
non Ψn

1 (i) =
c∆t

∆ξ

M−1∑
k=0

w′
k(x0)Ψ

n
1 (i − k)

∆(−ξ)
non Ψn

2 (i) =
c∆t

∆ξ

M−1∑
k=0

w′
k(x0)Ψ

n
2 (i + k)

(16)
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wherew′
k(x) is the derivative ofwk(x) in Eq.(13) with respect

to x. As a result, approximate solutions to the advection
equations in Eq.(8) are summarized in the following forms:

Φn+1
p (i) = Φn

p (i) + ∆
(+ξ)
adv Φn

p (i) + ∆(+ξ)
non Ψn

1 (i)

Φn+1
m (i) = Φn

m(i) + ∆
(−ξ)
adv Φn

m(i) + ∆(−ξ)
non Ψn

2 (i)
(17)

4. ADVECTION EQUATIONS.

A. 3D advection equations.

Applying Eq.(17) to Eqs.(5), (6) and (7), we have the dis-
cretized CIP solutions to the Maxwell’s equations as follows:

En+1
yx (i, j, k) ± H̃n+1

zx (i, j, k) = En
yx(i, j, k) ± H̃n

zx(i, j, k)

+ ∆
(±x)
adv [En

yx(i, j, k) ± H̃n
zx(i, j, k)]

∓ ∆(±x)
non [En

yz(i, j, k) ± H̃n
zy(i, j, k)]

En+1
zx (i, j, k) ± H̃n+1

yx (i, j, k) = En
zx(i, j, k) ± H̃n

yx(i, j, k)

+ ∆
(∓x)
adv [En

zx(i, j, k) ± H̃n
yx(i, j, k)]

± ∆(∓x)
non [En

zy(i, j, k) ± H̃n
yz(i, j, k)]

(18)

En+1
zy (i, j, k) ± H̃n+1

xy (i, j, k) = En
zy(i, j, k) ± H̃n

xy(i, j, k)

+ ∆
(±y)
adv [En

zy(i, j, k) ± H̃n
xy(i, j, k)]

∓ ∆(±y)
non [En

zx(i, j, k) ± H̃n
xz(i, j, k)]

En+1
xy (i, j, k) ± H̃n+1

zy (i, j, k) = En
xy(i, j, k) ± H̃n

zy(i, j, k)

+ ∆
(∓y)
adv [En

xy(i, j, k) ± H̃n
zy(i, j, k)]

± ∆(∓y)
non [En

xz(i, j, k) ± H̃n
zx(i, j, k)]

(19)

En+1
xz (i, j, k) ± H̃n+1

yz (i, j, k) = En
xz(i, j, k) ± H̃n

yz(i, j, k)

+ ∆
(±z)
adv [En

xz(i, j, k) ± H̃n
yz(i, j, k)]

∓ ∆(±z)
non [En

xy(i, j, k) ± H̃n
yx(i, j, k)]

En+1
yz (i, j, k) ± H̃n+1

xz (i, j, k) = En
yz(i, j, k) ± H̃n

xz(i, j, k)

+ ∆
(∓z)
adv [En

yz(i, j, k) ± H̃n
xz(i, j, k)]

± ∆(∓z)
non [En

yx(i, j, k) ± H̃n
xy(i, j, k)]

(20)

B. 2D Advection equations.

The 2D advection equations can be derived from 3D equations
by assuming that the 2D fields are uniform in z-direction, that
is, ∂/∂z = 0. As a result, Eqs.(5), (6) and (7) can be rewritten
as follows:

∂

c∂t
(Eyx ± H̃zx) ± ∂

∂x
(Eyx ± H̃zx) = − ∂

∂x
H̃zy

∂

c∂t
(Ezx ± H̃yx) ∓ ∂

∂x
(Ezx ± H̃yx) = ± ∂

∂x
Ezy

(21)

∂

c∂t
(Ezy ± H̃xy) ± ∂

∂y
(Ezy ± H̃xy) = ∓ ∂

∂y
Ezx

∂

c∂t
(Exy ± H̃zy) ∓ ∂

∂y
(Exy ± H̃zy) = +

∂

∂y
H̃zx

(22)

The above equations can be divided into two independent
fields E-wave (TM-wave) and H-wave (TE-wave) as follows:

∂

c∂t
(Ezx ± H̃y) ∓ ∂

∂x
(Ezx ± H̃y) = ± ∂

∂x
Ezy

∂

c∂t
(Ezy ± H̃x) ± ∂

∂y
(Ezy ± H̃x) = ∓ ∂

∂y
Ezx

(23)

∂

c∂t
(H̃zx ± Ey) ± ∂

∂x
(H̃zx ± Ey) = ∓ ∂

∂x
H̃zy

∂

c∂t
(H̃zy ± Ex) ∓ ∂

∂y
(H̃zy ± Ex) = ± ∂

∂y
H̃zx

(24)

It should be noted that̃Hyx = H̃y andH̃xy = H̃x for E-wave,
andEyx = Ey andExy = Ex for H-wave, respectively.

The CIP algorithm discussed in the preceding section pro-
vides the following discretized solutions for E-wave and H-
wave:

En+1
zx (i, j) ± H̃n+1

y (i, j) = En
zx(i, j) ± H̃n

y (i, j)

+ ∆
(∓x)
adv [En

zx(i, j) ± H̃n
y (i, j)] ± ∆(∓x)

non En
zy(i, j)

En+1
zy (i, j) ± H̃n+1

x (i, j) = En
zy(i, j) ± H̃n

x (i, j)

+ ∆
(±y)
adv [En

zy(i, j) ± H̃n
x (i, j)] ∓ ∆(±y)

non En
zx(i, j)

(25)

H̃n+1
zx (i, j) ± En+1

y (i, j) = H̃n
zx(i, j) ± En

y (i, j)

+ ∆
(±x)
adv [H̃n

zx(i, j) ± En
y (i, j)] ∓ ∆(±x)

non H̃n
zy(i, j)

H̃n+1
zy (i, j) ± En+1

x (i, j) = H̃n
zy(i, j) ± En

x (i, j)

+ ∆
(∓y)
adv [H̃n

zy(i, j) ± En
x (i, j)] ± ∆(∓y)

non H̃n
zx(i, j)

(26)

C. 1D Advection equations.

The 1D advection equations can be derived from 2D ones
by assuming that the 1D fields are uniform both in z and y-
direction, that is,∂/∂z = 0 and ∂/∂y = 0. As a result, the
second equation in Eq.(21) can be rewritten as follows:

∂

c∂t
(Ez ± H̃y) ∓ ∂

∂x
(Ez ± H̃y) = 0 (27)

whereEzx = Ez andH̃yx = H̃y are introduced. It should be
noted that the above relations include no non-advection terms,
and therefore we have accurate solutions to the advection
equations as follows:

En+1
z (i) ± H̃n+1

y (i) = En
z (i) ± H̃n

y (i)

+ ∆
(∓x)
adv [En

z (i) ± H̃n
y (i)]

(28)

5. APPLICATION TO EABCS FOR FVTD.

A. 1D EABCs.

In this section we study the ABCs for FVTD computations.
First we consider the most simple case, that is, 1D problem.
Assume that there exist two boundaries ati = −Nx and
i = Nx with a source between the two boundaries. Then the
radiated waves are always traveling outward at the boundaries.
In other words, it is enough to consider only the advection
terms for difference equations, since the non-advection terms
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are always zero in this 1D case. Consequently, the EABCs at
i = Nx are expressed as follows:

En+1
z (Nx) + H̃n+1

y (Nx) = En
z (Nx) + H̃n

y (Nx)

En+1
z (Nx) − H̃n+1

y (Nx) = En
z (Nx) − H̃n

y (Nx)

+ ∆
(+x)
adv [En

z (Nx) − H̃n
y (Nx)]

(29)

The above relations can be rearranged in a more simplified
form as follows:

En+1
z (Nx) = En

z (Nx) + ∆
(+x)
adv En

z (Nx) (30)

It should be noted that electric field always equals to magnetic
field, that is,En

z (Nx) = −H̃n
y (Nx). Similarly, we have the

following relation ati = −Nx

En+1
z (−Nx) = En

z (−Nx) + ∆
(−x)
adv En

z (−Nx) (31)

together withEn
z (−Nx) = H̃n

y (−Nx).
Present EABCs are somewhat different from the former

EABCs [5]. In the former case, the boundary fields were
evaluated by the linear extrapolation using the inner fields at
the two points adjacent to the boundary. In the present method,
on the other hand, interpolated fields at one time step are used
to extrapolted the boundary fields at next time step, where the
interpolation is made in terms of the fields at three points
including the boundary. It is worth noting that present method
shows a better improvement over the former one [5].

Fig. 1 shows numerical examples to check the accuracy of
the present method in comparison with PML with 21 absorbing
layers. Cell size for 1D EABC is chosen as 1000 and the large
cell size for reference FVTD is chosen as 20000. As for the
time step,n=100 corresponds to one cycle, and the error of
PML at n=2000 is -84.6 [dB] and that of EABC is -82.2 [dB].
It is demonstrated that the accuracy EABC is almost the same
order as that of PML.
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Fig. 1: Error of 1D EABC in Comparson with 1D PML

B. 2D EABCS

In this subsection, we consider 2D EABCs based on CIP at the
boundariesx = ±Nx andy = ±Ny. As for E-wave, Eq.(25)

leads to the following relations:

En+1
zx ( + Nx, j) − H̃n+1

y (+Nx, j) =

+ En
zx(+Nx, j) − H̃n

y (+Nx, j)

+ ∆
(+x)
adv [En

zx(+Nx, j) − H̃n
y (+Nx, j)]

− ∆(+x)
non En

zy(+Nx, j)

En+1
zx ( + Nx, j) + H̃n+1

y (+Nx, j) =

+ En
zx(+Nx, j) + H̃n

y (+Nx, j)

+ ∆(+x)
non En

zy(+Nx, j)

(32)

En+1
zx ( − Nx, j) + H̃n+1

y (−Nx, j) =

+ En
zx(−Nx, j) + H̃n

y (−Nx, j)

+ ∆
(−x)
adv [En

zx(−Nx, j) + H̃n
y (−Nx, j)]

+ ∆(−x)
non En

zy(−Nx, j)

En+1
zx ( − Nx, j) − H̃n+1

y (−Nx, j) =

+ En
zx(−Nx, j) − H̃n

y (−Nx, j)

− ∆(−x)
non En

zy(−Nx, j)

(33)

En+1
zy (i,+Ny) + H̃n+1

x (i,+Ny) =

+ En
zy(i,+Ny) + H̃n

x (i,+Ny)

+ ∆
(+y)
adv [En

zy(i,+Ny) + H̃n
x (i,+Ny)]

− ∆(+y)
non En

zx(i,+Ny)

En+1
zy (i,+Ny) − H̃n+1

x (i,+Ny) =

En
zy(i,+Ny) − H̃n

x (i,+Ny)

+ ∆(+y)
non En

zx(i,+Ny)

(34)

En+1
zy (i,−Ny) − H̃n+1

x (i,−Ny) =

+ En
zy(i,−Ny) − H̃n

x (i,−Ny)

+ ∆
(−y)
adv [En

zy(i,−Ny) − H̃n
x (i,−Ny)]

+ ∆(−y)
non En

zx(i,−Ny)

En+1
zy (i,−Ny) + H̃n+1

x (i,−Ny) =

+ En
zy(i,−Ny) + H̃n

x (i,−Ny)

− ∆(−y)
non En

zx(i,−Ny)

(35)

As for H-wave, Eq.(26) leads to the following relations:

H̃n+1
zx ( + Nx, j) + En+1

y (+Nx, j) =

+ H̃n
zx(+Nx, j) + En

y (+Nx, j)

+ ∆
(+x)
adv [H̃n

zx(+Nx, j) + En
y (+Nx, j)]

− ∆(+x)
non H̃n

zy(+Nx, j)

H̃n+1
zx ( + Nx, j) − En+1

y (+Nx, j) =

+ H̃n
zx(+Nx, j) − En

y (+Nx, j)

+ ∆(+x)
non H̃n

zy(+Nx, j)

(36)
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H̃n+1
zx ( − Nx, j) − En+1

y (−Nx, j) =

+ H̃n
zx(−Nx, j) − En

y (−Nx, j)

+ ∆
(−x)
adv [H̃n

zx(−Nx, j) − En
y (−Nx, j)]

+ ∆(−x)
non H̃n

zy(−Nx, j)

H̃n+1
zx ( − Nx, j) + En+1

y (−Nx, j) =

+ H̃n
zx(−Nx, j) + En

y (−Nx, j)

− ∆(−x)
non H̃n

zy(−Nx, j)

(37)

H̃n+1
zy (i,+Ny) − En+1

x (i,+Ny) =

+ H̃n
zy(i,+Ny) − En

x (i,+Ny)

+ ∆
(+y)
adv [H̃n

zy(i,+Ny) − En
x (i,+Ny)]

− ∆(+y)
non H̃n

zx(i,+Ny)

H̃n+1
zy (i,+Ny) + En+1

x (i,+Ny) =

+ H̃n
zy(i,+Ny) + En

x (i,+Ny)

+ ∆(+y)
non H̃n

zx(i,+Ny)

(38)

H̃n+1
zy (i,−Ny) + En+1

x (i,−Ny) =

+ H̃n
zy(i,−Ny) + En

x (i,−Ny)

+ ∆
(−y)
adv [H̃n

zy(i,−Ny) + En
x (i,−Ny)]

+ ∆(−y)
non H̃n

zx(i,−Ny)

H̃n+1
zy (i,−Ny) − En+1

x (i,−Ny) =

+ H̃n
zy(i,−Ny) − En

x (i,−Ny)

− ∆(−y)
non H̃n

zx(i,−Ny)

(39)

Fig. 2 shows errors [dB] in case of E-wave when a
continuous-wave is excited at the center of the FVTD cells.
Cell size for EABC is chosen as (200,200) and the large cell
size for reference FVTD is chosen as (1200,1200). As for the
time step,n=20 corresponds to one cycle, and the error of
the present method at n=1000 is -35.1 [dB] and that of PML
with 21 cells is -60.1 [dB]. It is demonstrated that although
the accuracy of the present method is not so good as that of
PML, it shows much better accuracy than that of Mur’s ABC
[2].
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Fig. 2: Error of 2D EABC in Comparison with 2D PML

C. 3D EABCs.

In case of 3D, we assume that the boundaries are atx =
±Nx∆x, y = ±Ny∆y and z = ±Nz∆z. Then the EABCs
for Eyx andEzx are summarized as follows:

En+1
yx ( + Nx, j, k) + H̃n+1

zx (+Nx, j, k) =

+ En
yx(+Nx, j, k) + H̃n

zx(+Nx, j, k)

+ ∆
(+x)
adv [En

yx(+Nx, j, k) + H̃n
zx(+Nx, j, k)]

− ∆(+x)
non [En

yz(+Nx, j, k) + H̃n
zy(+Nx, j, k)]

En+1
yx ( + Nx, j, k) − H̃n+1

zx (+Nx, j, k) =

+ En
yx(+Nx, j, k) − H̃n

zx(+Nx, j, k)

+ ∆(+x)
non [En

yz(+Nx, j, k) − H̃n
zy(+Nx, j, k)]

En+1
zx ( + Nx, j, k) − H̃n+1

yx (+Nx, j, k) =

+ En
zx(+Nx, j, k) − H̃n

yx(+Nx, j, k)

+ ∆
(+x)
adv [En

zx(+Nx, j, k) − H̃n
yx(+Nx, j, k)]

− ∆(+x)
non [En

zy(+Nx, j, k) − H̃n
yz(+Nx, j, k)]

En+1
zx ( + Nx, j, k) + H̃n+1

yx (+Nx, j, k) =

+ En
zx(+Nx, j, k) + H̃n

yx(+Nx, j, k)

+ ∆(+x)
non [En

zy(+Nx, j, k) + H̃n
yz(+Nx, j, k)]

(40)

En+1
yx ( − Nx, j, k) − H̃n+1

zx (−Nx, j, k) =

En
yx(−Nx, j, k) − H̃n

zx(−Nx, j, k)

+ ∆
(−x)
adv [En

yx(−Nx, j, k) − H̃n
zx(−Nx, j, k)]

+ ∆(−x)
non [En

yz(−Nx, j, k) − H̃n
zy(−Nx, j, k)]

En+1
yx ( − Nx, j, k) + H̃n+1

zx (−Nx, j, k) =

En
yx(−Nx, j, k) + H̃n

zx(−Nx, j, k)

− ∆(−x)
non [En

yz(−Nx, j, k) + H̃n
zy(−Nx, j, k)]

En+1
zx ( − Nx, j, k) + H̃n+1

yx (−Nx, j, k) =

En
zx(−Nx, j, k) + H̃n

yx(−Nx, j, k)

+ ∆
(−x)
adv [En

zx(−Nx, j, k) + H̃n
yx(−Nx, j, k)]

+ ∆(−x)
non [En

zy(−Nx, j, k) + H̃n
yz(−Nx, j, k)]

En+1
zx ( − Nx, j, k) − H̃n+1

yx (−Nx, j, k) =

En
zx(−Nx, j, k) − H̃n

yx(−Nx, j, k)

− ∆(−x)
non [En

zy(−Nx, j, k) − H̃n
yz(−Nx, j, k)]

(41)

Similar expressions are obtained forEzy, Exy, Exz and
Eyz, but they are omitted here for brevity of the paper.

Fig. 3 shows errors [dB] in case of 3D when a continuous
sine-wave is excited at the center of the FVTD cells. Cell
size for EABC is chosen as (50,50,50) and the large cell size
for reference FVTD is chosen as (130,130,130). As for the
time step,n=20 corresponds to one cycle, and the error of
the present method at n=150 is -20.1 [dB]. Numerical results
based on the 3D PMLs are not shown here, but it might be
concluded that the accuracy of the present 3D EABCs is not
satisfactory for practical applications.
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Fig. 3: Error of 3D EABC

7. Conclusion.

In this paper, we have proposed the EABCs for FVTD
method by extrapolating the electromagnetic fields at the
computational boundaries by employing the theory of CIP. In
the present FVTD formulations, we have utilized Lagrange’s
interpolation based on the curves of second order for eval-
uating both advection and non-advection terms. Numerical
calculations were carried out for checking the accuracy of the
present method in comparison with PML in case of 1D and
2D problems. In case of 1D the proposed method improves
the absorbing efficiency compared with the former EABC
based on the linear extrapolation. It is concluded that although
numerical accuracy of the present method is not so good as
PML in case of 2D, it saves much more computer memories
than PML and the accuracy might be acceptable for some
practical problems.

It deserves as a future problem to develop a new algorithm
which can cope with the 3D non-advection terms more accu-
rately than the present one.
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