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Abstract 
 

We formulate an efficient implicit FDTD method based on 
the locally one-dimensional (LOD) scheme and introduce the 
recursive convolution (RC), piecewise linear recursive 
convolution (PLRC) and auxiliary differential equation 
(ADE) methods into the LOD-FDTD for the analysis of 
frequency-dependent materials. As an application, an optical 
waveguide with an endfacet is analyzed, demonstrating the 
validity and the efficiency of the LOD-FDTD. Furthermore, 
an optical waveguide with a metal cladding is analyzed. It is 
shown that the results obtained from the PLRC- and ADE-
based LOD-FDTDs agree well with the result from the 
explicit FDTD, even with a time step being ten times as large 
as that used in the explicit FDTD. 
 
 

1. INTRODUCTION 
 

The finite-difference time-domain (FDTD) method has 
widely been used to obtain characteristics of various optical 
waveguides. Recall, however, that a time increment ( t) of 
the FDTD is limited by the Courant-Friedrich-Levy (CFL) 
condition. To remove this restriction, the FDTD based on the 
alternating-direction implicit (ADI) scheme [1], [2] has been 
developed. On the other hand, we have developed an 
unconditionally stable FDTD based on the locally one-
dimensional (LOD) scheme [3], [4]. The LOD-FDTD was 
also independently formulated in [5], and the split-field 
perfectly matched layer was investigated [6]. The main 
advantage of the LOD-FDTD is that the algorithm is quite 
simple with a subsequent reduction in the computational time, 
while maintaining the accuracy comparable to the ADI-FDTD. 
Note, however, that no detailed formulation of the LOD-
FDTD has been given for the TM mode. In addition, the 
LOD-FDTD has not been extended to the problem with 
material dispersions. 

In this paper, we present the TM mode formulation of the 
LOD-FDTD and introduce the recursive convolution (RC), 
piecewise linear recursive convolution (PLRC) and auxiliary 
differential equation (ADE) methods into the LOD-FDTD for 
the analysis of dispersive media. As an application, we 
analyze optical waveguides with an endfacet and with a metal 
cladding. 
 
 

2. FORMULATION OF THE LOD-FDTD 
 
   We first consider a TM case for nondispersive media. 
Maxwell’s equations are expressed as 
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in which  and  represent permittivity and permeability, 
respectively. After applying the Crank-Nicolson scheme to 
(1) and factoring the resultant equation, we obtain 
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(2) can be solved in two steps using not only the ADI scheme 
but also the LOD scheme. Application of the LOD scheme to 
(2) results in 
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for the first step and 
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for the second step. Note that unlike the ADI-FDTD, in each 
half step of the LOD-FDTD, we move forward only in the x 
or z direction. 
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  From (3a) and (3b), we derive 
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for the first step and 
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for the second step. In the first step, we substitute (4c) into 
(4b) and implicitly solve the resultant equation. Then, (4c) is 
explicitly solved. In the second step, the equations are 
calculated in the same way as in the first step. It should be 
noted that for the LOD-FDTD two implicit and two explicit 
equations are solved. As a result, the number of explicit 
equations to be solved is reduced, when compared with the 
ADI-FDTD in which two implicit and four explicit equations 
should be solved.  

For dispersive media, the RC [8] and PLRC [9] methods 
are developed, in which the convolution can be efficiently 
performed using recursion. It is assumed that for the RC 
method the electric field is constant over t, while for the 
PLRC method the electric field has piecewise linear 
functional dependence over t. Therefore, the PLRC method 
may achieve better accuracy than the RC method. On the 
other hand, the ADE method [10], [11] is a technique that 
uses the differential equation involving the electric field and 
the electric flux density. Although the ADE method provides 
a simple formulation when compared with the RC and PLRC 
methods, the computational time and memory are increased 
due to the calculation of the electric flux density. 

We here introduce the RC and PLRC methods into the 
LOD-FDTD for the analysis of dispersive media, expressed in 
a Drude model. Application of the PLRC method to the LOD-
FDTD results in 
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for the first step and 
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for the second step, where 0 is the permittivity of free space, 
and  the dielectric constant of the materials at infinite 

frequency. φn is expressed as 
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where c is the collision frequency. The expressions for 

0
, 

0
, 

m and m are given in [9]. When m =0 and m = 0 are 
adopted for all m, we obtain the equations for the RC method. 
In the first step, we substitute (6b) into (6a) and implicitly 
solve the resultant equation. Then, (6b) is explicitly solved. In 
the second step, the equations are calculated in the same way 
as in the first step. As a result, we solve two implicit and two 
explicit equations.  

On the other hand, applying the ADE method to the LOD-
FDTD, we obtain  
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for the first step and 
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Fig. 1: Configuration 
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Fig. 2: Reflectivity 
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Fig. 3: Reflectivity 
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for the second step, where p is the radian plasma frequency. 
In the first step, we substitute (9b) into (9a), and substitute the 
resultant equation into (9c). Then, the obtained equation is 
implicitly solved, and (9a) and (9b) are explicitly solved. In 
the second step, the equations are calculated in the same way 
as in the first step. As a result, we need to solve two implicit 
and four explicit equations. 

For each LOD-FDTD implementation, the number of 
explicit equations to be solved is reduced by two, when 
compared with the ADI counterpart. This leads to simple 
implementation of the algorithm, with a subsequent reduction 
in the computational time. 
 
 

3. NUMERICAL RESULTS 
 

To show the validity of the LOD-FDTD, we calculate the 
facet reflectivity of an optical waveguide [7]. The 
configuration is shown in Fig. 1, in which the refractive 
indices of the core and cladding are nco = 3.6 and ncl = 3.42, 
respectively. A wavelength of  = 0.86 m is used. The 
sampling widths are x = W/10 and z = 0.01 m.  

Fig. 2 shows the reflectivity obtained from the LOD-FDTD, 
when W = 0.6  is used. The upper limit of the CFL condition 
of the FDTD is defined as tCFL. For reference, included are 
the results obtained from the ADI-FDTD indicated as the 
cross and those from the FDTD with tCFL as the straight 
broken line. It is found that the results obtained from the 
LOD-FDTD perfectly follow those from the ADI-FDTD for 
both TE and TM cases. In addition, the results obtained from 
the LOD-FDTD agree well with those from the FDTD up to 
10 tCFL. 

Fig. 3 shows the reflectivity obtained from the LOD-FDTD 
with t = 10 tCFL as a function of W/ . For comparison, the 

results obtained from the FDTD with ∆tCFL are also shown. It 
is found that the results obtained from the LOD-FDTD agree 
well with those from the FDTD for both TE and TM cases. 
For t = 10 tCFL, the computational time of the LOD-FDTD 
is reduced to about 80% and 50% of those of the ADI-FDTD 
and the FDTD, respectively. 

Next, to evaluate the performance of the frequency- 
dependent LOD-FDTD, we analyze the optical waveguide 
with the metal cladding shown in Fig. 4. The refractive index 
of the metal (Au) is expressed in the following Drude model: 
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Fig. 4: Configuration 
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             Fig. 5: Field distribution 

 

in which p and c are determined by (11) with nm = 0.18-
j10.2 at a wavelength of  = 1.55 m. The core width is W = 
0.2 m. The sampling widths are x = 0.005 m and z = 
0.01 m. The incident wave is launched using the pulse 
excitation for the TM wave.  

Fig. 5(a) shows the field distribution at x = 0 m observed 
at t = 50 fs for t = 10 tCFL. For comparison, the result of the 
FDTD using the PLRC method with tCFL is included 
(although not shown, good agreement is found to exist among 
the results of the FDTDs using the RC, PLRC and ADE 
methods). Fig. 5(b) shows the field distribution at z = 8.04 m, 
where the field amplitude of the FDTD becomes maximal in 
Fig. 5(a). It is found that the result obtained from the PLRC-
LOD-FDTD agrees well with that from the ADE-LOD-FDTD, 
demonstrating almost the same accuracy for both FDTDs. In 
addition, their results are in good agreement with the result 
from the explicit PLRC-FDTD. In contrast, the field 
amplitude obtained from the RC-LOD-FDTD decreases. This 
is because the use of the large time step violates the 
assumption that the electric field is constant over t for the 
RC method. It is noteworthy, in the above analysis, that the 
computational times of the PLRC- and ADE-LOD-FDTDs 
with t = 10 tCFL are reduced to about 23% and 29%, 
respectively, of the time of the explicit PLRC-FDTD. 
 
 

4. CONCLUSION 
 

We have formulated an FDTD based on the locally one-
dimensional scheme and introduced the RC, PLRC and ADE 
methods into the LOD-FDTD. Several numerical results show 
the effectiveness of the LOD-FDTD for the analyses of both 
nondispersive and dispersive media. 
 
 

REFERENCES 
 
[1] T. Namiki, “A new FDTD algorithm based on 

alternating-direction implicit method,” IEEE Trans. 
Microw. Theory Tech., vol. 47, no. 10, pp. 2003-2007, 
1999. 

[2] F. H. Zheng, Z. Z. Chen, and J. Z. Zhang, “A finite-
difference time-domain method without the Courant 
stability conditions,” IEEE Microw. Guided Wave Lett., 
vol. 9, no. 11, pp. 441-443, 1999. 

[3] J. Shibayama, M. Muraki, J. Yamauchi, and H. Nakano, 
“Efficient implicit FDTD algorithm based on locally one-
dimensional scheme,” Electron. Lett., vol. 41, no. 19, pp. 
1046-1047, 2005. Errata, vol. 42, no. 8, p. 497, 2006. 

[4] J. Shibayama, M. Muraki, R. Takahashi, J. Yamauchi, 
and H. Nakano, “Performance evaluation of several 
implicit FDTD methods for optical waveguide analyses,”  
J. Lightw. Technol., vol. 24, no. 6, pp. 2465-2472, 2006. 

[5] V. E. Nascimento, F. L. Teixeira, and B.-H. V. Borges, 
“Unconditionally stable finite-difference time-domain 
method based on the locally-one-dimensional technique,” 

air

W

nm nm

z

x

4 International Symposium on Antennas and Propagation — ISAP 2006



in Proc. 22nd Simp, Brasileiro Telecomun., Campinas, 
Brazil, pp. 288-291, 2005. 

[6] V. E. Nascimento, B.-H. V. Borges, and F. L. Teixeira, 
“Split-field PML implementation for the unconditionally 
stable LOD-FDTD method,” IEEE Microw. Wireless 
Compon. Lett., vol. 16, no. 7, pp. 398-400, 2006. 

[7] J. Shibayama, A. Yamahira, T. Mugita, J. Yamauchi, and 
H. Nakano, “A finite-difference time-domain beam-
propagation method for TE- and TM-wave analyses,” J. 
Lightw. Technol. , vol. 21, no. 7, pp. 1709-1715, 2003. 

[8] R. J. Luebbers, F. P. Huusberger, K. S. Kunz, R. B. 
Standler, and M.Schneider, “A frequency-dependent 
finite-difference time-domain formulation for dispersive 
materials,” IEEE Trans. Electromagn. Compat., vol. 32, 
no. 3, pp. 222-227, 1990. 

[9] D. F. Kelly and R. J. Luebbers, “Piecewise linear 
recursive convolution for dispersive media using FDTD,”   
IEEE Trans. Antennas Propagat., vol. 44, no. 6, pp. 792-
797, 1996. 

[10] T. Kashiwa and I. Fukai, “A treatment by FDTD method 
of dispersive characteristics associated with electronic 
polarization,” Microw. Opt. Technol. Lett., vol. 3, pp. 
203-205, 1990.  

[11] R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct 
time integration of Maxwell’s equations in linear 
dispersive media with absorption for scattering and 
propagation of femtosecond electromagnetic pulses,” Opt. 
Lett., vol. 16, no. 18, pp. 1412-1414, 1991. 

International Symposium on Antennas and Propagation — ISAP 2006 5


