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Abstract – We present a discontinuous Galerkin augmented 
electric filed integral equation, hereafter referred to as AEFIE-
DG, for low-frequency electromagnetic analysis. This 
augmented equation is obtained by combining the 
discontinuous (DG) electric field integral equation (EFIE) with 
the current continuity equation. Surface and line charges, 
which reside respectively on the discretization elements and 
their adjoining contours, are introduced based on the 
discontinuity of surface currents. The proposed method is 
stable in low frequency regime, and suitable for non-conformal 
mesh. Its capability and stability are validated by numerical 
examples. 

Index Terms — Discontinuous Galerkin, Augmented electric 
filed integral equation, Low-frequency breakdown, 
Electromagnetic scattering. 

1. Introduction 

Electric field integral equation (EFIE) is very popular in 
solving time-harmonic electromagnetic scattering problems. 
In order to enforce the normal continuity of the currents, the 
mesh is required to be conformal. The divergence-
conforming Rao-Wilton-Glisson (RWG) [1] basis functions 
are widely chosen as test and trial basis functions. It is time-
consuming to generate a good quality mesh for the 
multiscale targets including both large platform and fine 
features.  Obviously, it is more efficient if we can firstly 
divide the targets into several subdomains, and generate the 
mesh of every subdomain independently. Unfortunately, this 
usually results in nonconformal meshes, based on which the 
divergence-conforming basis function is difficult to define. 

Recently, EFIE with discontinuous Galerkin (DG) is 
proposed to handle the nonconformal mesh [2]-[4]. Hereafter, 
we use EFIE-DG to denote respectively the EFIE solved by 
using discontinuous vector basis functions and DG testing 
scheme. The normal continuity of currents is weakly 
enforced through a weak form Galerkin formulation. It 
provides great flexibility to analyze the multiscale targets. 
However, EFIE-DG suffers from low-frequency breakdown 
phenomenon, which origins from the imbalance between the 
scalar and vector potentials of EFIE at low frequencies. In 
this paper, an augmented electric field integral equation 
discontinuous Galerkin (AEFIE-DG) method is presented to 
overcome low-frequency breakdown. Surface and line 
charges, which reside respectively on the discretization 
elements and their adjoining contours, are introduced based 

on the discontinuity of surface currents. The resulting 
AEFIE-DG system is stable even at low frequencies. 

2. Augmented EFIE with Discontinuous Galerkin 

Consider a plane wave scattering form a perfect electric 
conductor (PEC) target, the EFIE is 
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where S  is the PEC surface, n̂  is its normal vector, and 
( )incE r  is the incident electric field. 0k  and 0 are wave 

number and wave impedance, respectively. G( , )r r  is the 
free-space Green’s function and ( )J r  is the surface current. 
The surface currents are discretized by Half RWG (HRWG) 
basis functions. It should be noted that we use normalized 
version of HRWG basis functions by removing the edge 
length form its original definition. The impedance matrix of 
the MoM systems associated with EFIE can be written by 
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It is easy to find that the first two terms in the right hand of 
(2) are the same integration forms as those in traditional 
Galerkin method with RWG basis functions, while the rest 
three terms are caused by the discontinuity between HRWG 
basis functions. Unfortunately, the last term in (2) is 
infinitely large when the observation points are located in the 
source line. In DG methods, the double contour integral is 
cancelled out, and an interior penalty (IP) term [2] is adopted 
to penalize charges at contour boundaries. Here, IP term is 
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In (3),   is IP stabilization function.  For each triangle, we 
define the charge basis functions 
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where iS  is the area of  triangle patch iT  . In addition, line 
charge basis functions defined on the common edge can be 
expressed by 
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where il  is the length of common edge iL . With the above 
charge basis functions, we define the scalar potential matrix 
P  with the charge neutrality enforced. The matrix P  can be 
written by  
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The submatrix llP is associated with the IP term (3).  Here, 
we define a reduced incidence matrix D  [5], [6] by dropping 
a triangle. The current continuity condition yields  
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Combine EFIE-DG and current continuity condition, we get 
the AEFIE-DG as 
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in which the vector b  denotes the excitation, and the vector 
potential matrix V is 
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3. Numerical Results 

     A PEC sphere is used to validate the AEFIE-DG. Assume 
that a x -polarized incident plane wave with amplitude of 
1V/m illuminates on the sphere along the z axis. The radius 
of the sphere is 0.5m. There are 556 triangles and 280 nodes 
in the mesh. To investigate the low-frequency performance 
of different solvers, the frequency ranges from 3 Hz to 300 
MHz. Fig. 1 shows the condition number of impedance 
matrices associated with AEFIE-DG and EFIE-DG. As 
frequency decreases, the impedance matrix of EFIE-DG 
becomes ill-conditioned, while the conditioning of AEFIE-
DG maintains stable. The RCS of the PEC sphere has been 
calculated by using AEFIE-DG and EFIE-DG at 3 Hz, as 
shown in Fig. 2. It is easy to find that EFIE-DG is ineffective 
due to the low-frequency breakdown, while AEFIE-DG is 
able to obtain correct result.  

4. Conclusion 

AEFIE-DG was proposed in this paper as an effective 
remedy for the low-frequency breakdown of EFIE-DG. Line 
charges are introduced based on the discontinuity of the 
surface currents. Numerical examples demonstrate that the 
AEFIE-DG is well-conditioned and accurate in the low 
frequency regime. 

 
Fig. 1. Condition number versus frequency for AEFIE-DG 

and EFIE-DG. 
 

 
Fig. 2. RCS from PEC sphere with radius 0.5m at 3Hz. 
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