Small PIFA for WLAN of IEEE 802.11a,b,g

Dau-Chyrh Chang, Shih-Hung Lee, Jr-Hung Lee, Sheng Mou Huang Department of Electrical Engineering, Da Yeh University
112 Shan Jeau Road, Da Tsuen Shiang, Changhua, Taiwan 515, R.O.C.
http://www.dyu.edu.tw/~wcrc/
E-mail:dcchang@mail.dyu.edu.tw

Introduction

The small size of PIFA (planar inverted F antenna) with size 11 mm by 9 mm by 10 mm is designed for dual bands of IEEE802.11a,b,g. The frequency bands are from 2.3 GHz to 2.62 GHz and form 5.05 GHz to 5.49 GHz . The antenna is simulated by the HFSS and IE3D simulation software. The return loss and gain patterns at principal plane cuts for the two bands are measured. The average gains for the center frequency at these two bands are -0.3 dBi and -0.45 dBi .

Hardware implementation and simulation

The antenna structure and detailed size is shown in Fig. 1. The antenna material is use the FR4 substrate material. The thickness of FR4 is 0.8 mm and relative permittivity is 4.4 . The distance between FR4 substrate and ground plane is 10 mm . The material between FR4 subsrate and graound plane is air. The size of ground plane is 15 mm by 60 mm . The antenna is divided into four parts A, B, C, the D. Part A is composed of 7.5 mm by 2 mm rectangular shape and 3.5 mm by 1 mm rectangular shape. Part B is 1 mm by 5 mm rectangular shape. Part C is 11 mm by 3 mm . Part D is 1 mm by 2 mm . The short pin is at left side of part A. The feed point is at right side of part A. The distance between short pin and feed is 5 mm . Part A is special for the resonance frequency at 5.25 GHz . And the parts B,C, and D is designed for frequency at 2.45 GHz.

We use HFSS and the IE3D software to analyze the structure of the antenna. By changing the length of the part A, the center frequency 5.25 GHz can be obtained. By changing the size of B, C, the D , the center frequency 2.45 GHz can be obtained. With special optimization, the return loss at 2.3 GHz to 2.62 Ghz and 5.05 GHz to 5.4 GHz can be obtained. And the antenna principal plane patterns are omni-directional.

Results of Measurement

The antenna pattern is measured by the spherical near field range at WCRC (wireless communication research center) of Da Yeh University. And the return loss is measured by the HP8720 vector network analyzer. The result of return loss is shown in Fig. 2. There are two impedance bandwidths. They are from 2.14 GHz to 2.57 GHz
and from 5.01 GHz to 5.49 GHz . The antenna pattern for XZ-plane at 2.45 GHz is shown Fig. 3. The red sold line is the E_{θ} pattern and the dot blue line is the E_{φ} pattern. The antenna pattern for YZ-plane at 2.45 GHz is shown Fig. 4. The red sold line is the E_{θ} pattern and the dot blue line is the E_{φ} pattern. The antenna pattern
for XZ-plane at 5.25 GHz is shown Fig. 5. Patterns for both E_{θ} and E_{φ} are quite similar. The antenna pattern for YZ-plane at 5.25 GHz is shown Fig. 6. Since there is a measured blockage near theta at 180 degrees for all Figs. 3~6, the average antenna gain is calculated without the blockage region. The calculated average gain is -0.3 dBi at 2.45 GHz , and -0.45 dBi at 5.25 GHz .

Conclusion

The size of PIFA antenna is with size 11 mm by 9 mm by 10 mm designed for WLAN of IEEE802.11a,b,g. Four parts of the antenna are analyzed by the simulation tool to determine the desired frequency. The antenna implemented and measured. The antenna frequency bands are from 2.14 GHz to 2.57 GHz and from 5.01 GHz to 5.49 GHz . The E_{θ} and E_{ϕ} patterns at both XZ and YZ planes are measured at 2.45 GHz and 5.25 GHz respectively. The average gain is 0.3 dBi at 2.45 GHz and -0.45 dBi at 5.25 GHz .

References

[1] Yarasi, S.; Kadambi, G.R.; Hebron, T.; "Conformal shaped PIFAs for cellular communication applications "Antennas and Propagation Society International Symposium, 2003. IEEE , Volume: 3, 22-27 June 2003 Pages:82-85 vol. 3
[2] Kadambi, G.R.; Hebron, T.S.; Meza, T.B.; Yarasi, S.; "Applications of annular and L-shaped slot in PIFA design "Antennas and Propagation Society International Symposium, 2003. IEEE , Volume: 3, 22-27 June 2003 Pages: 86 vol. 3
[3] Pey-Ling Teng; Shyh-Tirng Fang; Kin-Lu Wong "PIFA with a bent, meandered radiating arm for GSM/DCS dual-band operation "Antennas and Propagation Society International Symposium, 2003. IEEE , Volume: 3, 22-27 June 2003 Pages:107-110 vol. 3

Fig. 1 Antenna geometry

Fig. 2 Measured return loss

Fig. 3 XZ-plane patterns at 2.45 GHz

Fig. $4 \quad$ YZ-plane patterns at 2.45 GHz

Fig. 5 XZ-plane patterns at 5.25 GHz

Fig. 6 YZ-plane patterns at 5.25 GHz

