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1. Introduction

Various numerical methods have been presented to solve scattering
problems for somewhat complicated bodies [1],[2]. The fundamental limi-
tation is the size of scatterer that may be handled using numerical
methods. The physical optics approximation is useful for analyzing high
frequency scattering problems [3]. Here we solve scattering problems for
non-convex bodies within the physical optics approximation. The reduced
phase integral can be evaluated by the method of statiomary phase [3],
[4]). In order to calculate the integral more precisely, we introduce the
complex stationary points as well as the real ones: The solutions by the
method of stationary phase well coincide with those by the numerical
integration method. Moreover, the physical optics scolutions for the
radar cross sections are in good agreement with the numerically rigorous
ones by the mode-matching method [5],(6].

2. Formulation of problem and complex stationary points

Consider a perfectly conducting, periodic deformed cylinder whose
surface is described by

r{¢) =a (1 -6 cos(1¢)), a>0,1>6>0 (1)

where T is the integer. An incident plane wave with unit amplitude is
represented by

E;(0,8) = exp[-3kp cos(8-a) ) (2)

where k is the wavenumber, and a the incident angle (see Fig.l). Then
the physical optics solutions for the far scattered field can be repre-
sented in the form, for the E-polarized field,

Es(o.e) = (k/21ro)1/2 explj(kp -n/a)][ g(d)exp (-ikf(¢,08))dd  (3)
Lo

g($) = r(d)cos(a-n($))/cos(d-n(¢)),

£($,8) = 2r(¢)cos(¢p-(6+a)/2)cos((6-0)/2) (4)

where L, denotes the illuminated portion of the scatterer and n(¢) des-

with

ignates the angle between the outward normal direction m on L, and the

0
positive x axis (see Fig.l).

The diffraction integral of the form (3) can be evaluated by the
method of stationary phase [4]). The main contribution for (3) arises

from near the points §’s which satisfy
[d£(9,0)/d¢]y 5= O . (5)
The solutions of (5) are called the stationary points. By appealing to
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Fig.l, we bhave a relation such that

() = ¢ - tan"l(dr/rde) . ()
When we redefine n{¢) through (6), the relation
n@) = (8+a)/2 (7)

holds for the complex solutions of (5) as well as the real ones. For
the complex solutions, we impose the constraint on £f($,8) such that
Im[£($,8)] s 0 (8)

where Im{-] denotes the imaginary part of the quantity in parentheses.
When the complex solutions of (5) fulfill (8), they are called the
complex stationary points. In this paper, we evaluate the diffraction
integral (3) by the method of stationary phase in which the complex
stationary points are considered as well as the real ones.

3. Radar cross section for non-convex body

We calculate the radar cross section of the body of the form (1).
The radar cross section is defined as follows:

o(a,e) =  1im 2mp|E (p,a)lz.
= o s

The body (1) is non~convex for the parameters T, § which satisfy the
condition as 1 > § > 1/(12+1). When the plane wave incidents on the
locally concave part of the scatterer, in particular ¢=0, the radar
cross section of the body with T=10 and 6=0.04 is given by, (see the
Appendix),

0(0,0)/2a = 2.21 + 1.82 sin(0.080ka) + exp(-0.80ka)
[3.33 cos(0.552ka-0.574) + 1.75 cos(0.472ka+0.996) ]
+ exp(-0.319ka)(4.44 cos(l.50ka+0.122)
+ 2,33 cos(l.44ka~1.69)] + 4.28 exp(~0.399ka)
+c0s(0.968kat0.697) + 1.61 exp(-0.161ka)
+ 2.85 exp(-0.638ka) . (9)

The radar cross section without consideration of the complex station-
ary points is as follows:

0(0,0)/2a = 2,21 + 1.82 sin(0.080ka) . (10)

These results are illustrated in Fig.2 together with those by the direct
numerical evaluation of (3) and the numerically rigorous solutions by
the mode-matching method [6}. By considering the complex stationary
points, the method of stationary phase can well estimate the diffraction
integral for the non-convex body. The physical optics solutions are in
good agreement with those by the mode-matching method in moderately high
frequency regions. The second term of (9) and (10) can be explained by
the interference phenomena among the scattered waves from the real sta—
tionary points on Lo.

4, Conclusion

Consideration of the complex stationary points permits us to eva-
luate the diffraction integral for the non-convex body by the méthod of
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stationary phase. The physical optics approximation is useful for handl-
ing scattering problems for non-convex bodies. The radar cross section
of the non-convex body shows the essentially different feature from the
convex body: The radar cross section varies with frequency in a compli-
cated way. This, however, is interpreted by the interference of the
scattered waves from each stationary points.
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Appendix

Let us calculate the complex stationary points as well as the real
cnes. In this example, we have an algebraic equation of the form

(5632 6c0st0F - 11520 8cos®F + 7840 8cos®F - 2800 Scos’d
+ 150 6c052$ -6 -1}sind =0 (A.1)

The stationary points can be obtained by solving (A.1) numerically.
For such case 8=0.04, the physically reasonable solutions of {(A.l),
which satisfy (8), are given by

sind = 0, cos § = 0.970; 0.750exp(-j1.33); 0.353exp(~30.746) (A.2)

with the aid of the Bairstow method [7]. Considering the symmetry of the
problem under consideration, from (A.2) we have seven stationary points
as follows:

¢ = 0; *0.244; +(0.745+j0.146); *(1.316+j0.245) . (A.3)
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Fig.l-Coordinate system and a periodic
deformed cvlinder.
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Fig.2-Frequency dependence of radar cross
section ( T=10, p=0.04, a=0 ).
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