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Abstract – Nonlinear inversion algorithms have many 

applications in geophysical explorations, biomedical imaging, 
nondestructive testing and etc. One of the bottlenecks in these 
algorithms is the computational efficiency. In this abstract, we 

investigate accelerating the contrast source inversion algorithm 
using graphic process unit. By taking advantage of the 
massively parallel computing architecture of GPU, we can 

significantly reduce the computational time of inversion. 
Numerical examples show that we can reduce the 
computational time from hours to only a few minutes. 

Index Terms — Microwave imaging, nonlinear inversion, 
contrast source inversion, graphic process unit (GPU). 

1. Introduction 

Many applications, such as geophysical prospecting, 

biomedical imaging, nondestructive testing, and etc., require 

to solve inverse problems of electromagnetic data in order to 

reconstruct the electrical properties of the domain of 

investigation. It is usually formulated as an optimization 

problem of the electrical properties to minimize the 

difference between the measured and simulated data [1]. 

Because measurement can never acquire complete 

information of the domain of investigation, electromagnetic 

inverse problems are usually nonlinear and ill-posed. Many 

algorithms have been developed to solve these problems. 

They usually iteratively update the electrical properties to 

minimize the difference between simulation and measured 

data. Because the computation involves many linear algebra 

operations of large matrices and vectors in each iteration, one 

of the bottlenecks of these algorithms is the computational 

efficiency. Many researchers have worked on improving the 

efficiency of inversion algorithms by either reducing the 

number of unknowns or developing fast forward modeling 

algorithms, such as the signal-subspace-based methods [2], 

the iterative multi-scaling method [3], the scattering 

approximation [4], and etc. Most of them focus on the 

theoretical improvement of algorithms. 

In this work, we investigate the possibility of accelerating 

nonlinear inversion algorithms using massively parallel 

computing devices. We studied the multiplicative-

regularized contrast source inversion algorithm (MR-CSI) 

[4]. Furthermore, we use compute unified device 

architecture (CUDA) as a tool for acceleration of the CSI 

algorithm because many computational procedures in CSI 

algorithm can be done highly paralleled. After careful 

implementation, we observe more than 15 times of 

improvements in computing speed compared with the 

original MR-CSI algorithm implemented on CPU. 

2. Formulation 

We define Domain D as the domain of investigation. 

Assume transmitting and receiving antennas surround 

Domain D from different locations around the target of 

investigation. We also define Domain S as the set of 

locations of transmitting antennas, use subscript f to denote 

different frequencies and subscript s for different 

transmitters. Variables p and q represent the position vectors 

in Domain S and D, respectively. The contrast can be defined 

as follows: 

 

where ε and σ represent permittivity and conductivity that are 

frequency independent. εb represents the permittivity of the 

background. For 2D TM-polarization case, the field in the 

domain can be solved by volume integral equation as 

 

where 

 

 

and ws,f is defined as contrast sources as 

 

with us,f represents the total field in Domain D due to source 

s, uinc
s,f represents the incident field in Domain D from 

transmitter s all at frequency f. kb,f represents the wave 

number in the background, and H(1)
0 (x) represents the first 

kind of Hankel function of zeroth order. The scattered field 

measured by receiving antennas can be estimated by the 

following equation: 

 

Based on the above definitions, the MR-CSI algorithm can 

be written as minimizing the following cost functional 

 

where 

 

in which 
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and 

 

ηD and ηS are normalization factors.  is the weighted 

L2-norm regularization. For details of the above formulation, 

please refer to [5].  

3. Algorithm parallelization on GPU 

GPU platform is very good at processing data in a highly 

parallel fashion with minimum data transfer. We parallel the 

algorithm based on this principle. One of the advantages of 

MR-CSI algorithm is that the mapping between source and 

receiver can be computed paralleled. Therefore, GS,f and GD,f 

are partitioned into groups based on transmitter index. Based 

on the fact that linear algebra computation occupies a large 

part of computational time, we accelerate linear algebra 

computation first. When computing inner product , 

where a and b are vectors, we allocate each element in a and 

the corresponding element in b a thread for parallel 

computing because the multiplication of each element in the 

two vectors is unrelated. For the vector generated from 

paralleled multiplication, the vector elements are divided 

into groups with two elements inside, and each group is 

allocated a thread for parallel addition. Then we get a new 

vector for about half in size. Repeating the grouping and 

addition operations until we get the inner product result. In 

the process of computing , where A is a matrix and b is 

a vector, the multiplication of elements in A and b are 

unrelated. Thus we allocate each element-element 

multiplication a thread to calculate the multiplication results 

in parallel. Then for the multiplication of each row of matrix 

with the vector, we adopt the same grouping and addition 

operations until we get the desired result vector. 

In designing the parallel algorithm on GPU, some key 

points should be considered in both memory management 

and thread allocation. For thread allocation, in order to 

ensure full utilization of GPU processors, the number of 

threads per block should be at least 32 and divisible by 32 to 

ensure all the threads can be fully used. This also guarantees 

every stream processor in one stream multiprocessor fully 

occupied by threads. In addition, some efficient parallel 

computing APIs are also used in optimization of the MR-CSI 

algorithm, such as cuFFT to accelerate fast Fourier transform 

and cuBLAS for some of the vectors and matrix operations. 

4. Numerical example 

We validate the GPU-paralleled MR-CSI algorithm using 

the 2D Fresnel dataset [6]. The dataset is measured 

uniformly from 2 to 10 GHz with step frequency 1 GHz. All 

frequencies are used in our inversion. After reconstruction, 

we plot the complex contrast function at the lowest 

frequency as shown in Figure 1, from which we can see both 

dielectric cylinders are properly reconstructed. We use 

Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz and Nvidia 

Geforce GTX 480 for computation. The CPU has two cores 

with four threads and the GPU has 512 stream processors. 

The program for CPU is compiled using Intel Compiler and 

linked with Intel MKL library for computing Fast Fourier 

Transform. The reconstruction on CPU takes 11779 seconds, 

while the same computation only takes 700 seconds on GPU. 

The speedup is more than 16 times. 

 

 
Figure 1 Reconstruction of two dielectric cylinders from 

Fresnel dataset 

5. Conclusion 

In this work, we investigate improving the computational 

efficiency of MR-CSI algorithm using massive parallel 

computing device. From the numerical tests, we observe 

more than 15 times reduction in computing time. This could 

help to alleviate the bottleneck of computing speed of 

nonlinear inversion algorithms. From this study, we 

speculate that similar acceleration strategy can be employed 

in other nonlinear inverse scattering approaches. 
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