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1. Introduction 
 

Borehole radar is a form of ground-penetrating radar, which is a popular method for high-
resolution imaging of the shallow subsurface. Boreholes are usually filled with fluid such as water, 
and this medium fills the space between the antennas and the formation. Many authors have 
reported that the structure influences the measured data in borehole radar. In the works [1]-[3], they 
assumed that the sonde including the antennas is located on the center of the borehole. However, the 
sonde is not always centered in a borehole in actual measurement.  

In an induction logging tool, eccentered tool have been already investigated. Lovell and 
Chew have derived an efficient algorithm to solve the problem of an eccentered induction tool, with 
or without a metallic mandrel, in the presence of an inhomogeneous multicylindrically layered 
formation [4]. Hue and Teixeira extend it to tilted coil antennas in eccentric formation [5]. We may 
extend these works for the borehole radar case. 

In this paper, we will derive the field of a point electric dipole, which is eccentered in a 
borehole. With this function included in MoM, we model the eccentric dipole antenna in a borehole. 
In order to verify the driven algorithm, an experiment was done. Throughout the paper, the time 
factor exp( )i tω−  is assumed and suppressed. 

 
2. Calculation of Fields of Electric Point Source for MoM Analysis 
 
 A theoretical model for a thin dipole antenna in homogeneous media can be derived from 
the Method of Moment (MoM) using Green’s function G0. In the presence of special scattering 
medium, we can evaluate the impedance matrix including the scattered field by substituting the free 
space Green’s function G0 with Gd , which includes the scattered filed, in the MoM [1]-[3]. 
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Figure 1: Crosssection of the cylindrical layers. 

In this paper, we will extend analytical methods in [4]-[5] and derive field of a pint 
electrical dipole source. This is 
equivalent to derivation of the Green’s 
function Gd. Now, we consider a point 
electric dipole covered with a 
cylindrical insulator. The crosssection 
of the medium is like in Fig. 1. The 
diameters of the cylindrical layers are 

 and , respectively. The origin O 
is located on the center of the outermost 
cylindrical layer, and another origin 

12a 22a

O′′  
is on the center of the innermost 
cylindrical layer. The point electric 
dipole is pointing z direction on the z′′ -
axis. The z components of the electric 
field and the magnetic filed in region 2 
can be decomposed into spectral 
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where the matrix  and are the n-th order 2( )n

ijT ( )n
ijR 2×  transmission matrix and 2 reflection 

matrix at cylindrical boundaries between region i and j, respectively, and these are given in [6, 
Chapter 3]. The matrix I  is an identity matrix. The radial component of the wave number is given 
by 
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i i zk k  kρ = − ( 1 2,3)i ,=  and is the wave number of a plane wave in the i-th layer.  is an 

unknown arbitrary column vector. With the addition theorem [6, Appendix D], the above equation 
is decomposed around the z-axis, and we rewrite (1) as  
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In the region 2, there are both standing wave and outgoing waves, and the fields should be the form 
of   
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The vector  is an unknown arbitrary column vector. By comparing (2) and (3), we have two 
equations. Eliminating , we have  
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These system equations can be solved for the vector , from which the z-component of the field 
in region 1 can be given by   
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When the source is a point electric dipole at ( 0, zρ′′ ′=  pointing z direction, integrating the 

 with respect to [ 1 1
T

z zE H ] zk , the z-components zE  and zH  of the total fields at 1( , ), ( )z aρ ρ′′ ′′>  
are given as 
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where ,0 1( 0),0( 0)n n nδ ′′ ′′ ′′= = ≠ . 1ε  is the permittivity in region1. In (6), we assumed that the 
product of the current I and the length l of the source is one, i.e. Il = 1. We should notice that the 
values of the total field zE  corresponds to that of the Green’s functions ( , , , )dG z zφ φ′ ′  in (10) in [1], 
except for the values of ρ  and ρ′ . This implies that we may model single eccentered dipole 
antenna in a borehole with (6) and the MoM. Although the dipole antenna array is considered in [1], 
note that we consider single dipole antenna case, which is much more common, in this paper. 
 
3. Numerical Results and Experimental Verification 
 
 Now we consider an eccentric dipole antenna in three cylindrical layers as shown in Fig. 2. 
Note that Fig. 1 is equivalent to the crosssection of Fig. 2, except for existence of the dipole antenna. 
The dipole antenna is located on the z′′  axis. The red lines in Fig. 3 show the calculated input 
impedances with the MoM. Above 400 MHz, we can see some differences among the three cases, 
i.e. an antenna in homogeneous medium, one centered in cylindrical layers and one eccentered. We 
modeled the dipole antenna, which is insulated by medium such as FRP, in the MoM. We may 
regard the air in the innermost cylindrical layer in the model as the insulator in the actual borehole 
radar. Note that the dipole antenna is always centered in the innermost cylindrical layer both in the 
model and the actual borehole radar measurement. The borehole is usually filled with water in 
actual borehole radar, and we model the water layer in the second layer in the MoM. If there is the 
water layer around the antenna, the input impedance changes with the frequencies sharply. It should 
be noted that the resonant frequencies caused by the total length l are different among the three 
cases. We should notice the highest operating frequency in actual borehole radar measurement is 
about 500 MHz, and the most common ones are usually between 10 MHz and 200 MHz. The 
outermost layer is rock or soil in the actual borehole radar measurement, instead of the air in the 
model of the MoM. The relative permittivity of the rock or soil is usually between 7 and 30. Since 
permittivity of the rock or the soil is higher than that of air, the resonance frequency would be lower 
in actual borehole radar measurement than in the MoM model. According to the MoM calculation, 
the antenna impedance would be changed by the condition which includes eccentricity of the 
antenna in the common frequencies of the borehole radar.    
 For experimental verification, we did experiments with a monopole antenna on a ground 
plane as shown in Fig. 4.  We imitated the model of the MoM in the experiments. The water layer 
was made by thin acryl pipes and pure water. We prepared the two types of the acryl pipes with the 
different distance ρ′  for the centered dipole antenna and the eccentered dipole antenna. The blue 
lines in Fig. 3 show the measured data. We find that each experimental curve is similar to 
corresponding one in MoM. We verified the proposed equation (6).    
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Figure 2: Coordinate system used to 
describe the geometry of the problem. 

Figure 4: Measurement of input impedance of 
the monopole antenna. 
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4. Conclusions 
 
 We derived analytical fields of the electric point source in order to model a dipole antenna, 
which is eccentered in cylindrical layer, with the MoM. This condition can be seen in actual 
borehole radar measurement, since the sonde including the antenna is usually eccentered in deep 
depth. In the derivation, we extended the previous works [4]-[5] to the electric dipole case, and we 
may model the eccentric dipole antenna. According to the calculation with the MoM, we found that 
the eccentricity of the antenna significantly affect the antenna impedance. We verified the 
calculation with the measured input impedance of the monopole antenna on the ground plane.  
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Figure 3: Input impedance inZ  of the dipole antenna. (a) Resistance. (b) Reactance. The total length 
l and radius a of the dipole antenna are 0.5 m and 5 mm, respectively. 0mmρ′ =  in 
“Centered” and 9mmρ′ =  in “Eccentered”. The parameters for both “Centered” and 
“Eccentered”: , 1 2cma = 2 3.2cma = , 1 3 1r rε ε= = , 2 80rε = , 1 2 3 0S / mσ σ σ= = = . In 
“Homogeneous”, there are no cylindrical interfaces and the surrounding medium is air only. 
In the experimental data, the measured input impedance of the monopole antenna in Fig. 4 
was multiplied by 2 in order to compare the experimental input impedance of the dipole 
antenna calculated with the MoM. 
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