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Abstract 
 
Properties of a raindrop size distribution (DSD) parameter 
estimated from TRMM Precipitation Radar (PR) 
measurements are examined. The DSD parameter, called “ ” 
which is equivalent to the estimate of “a” in the radar 
reflectivity (Z) – rail rate (R) relation, Z = aRb, shows a clear 
contrast between over land and over ocean. It also has a 
clear correlation with rain-top height and lightning activity 
derived from TRMM LIS measurement. Moreover, the 
seasonal variations of “a” over South India and Singapore 
show good correlations with ground-based disdrometer 
measurements. These results suggest that  provides a means 
of global mapping of DSD.    
 

1. INTRODUCTION 
TRMM Precipitation Radar (PR) has a capability to estimate 
a parameter of raindrop size distribution (DSD) from a 
combination of radar reflectivity profile and a path-integrated 
attenuation with the surface reference technique [1]. The 
directly derived DSD parameter called “ ” which is the 
adjusting parameter of the coefficient  in k = Ze , where k 
and Ze are attenuation coefficient and effective radar 
reflectivity at 13.8 GHz, respectively. In other words, 
adjusted  is expressed as  = 0 where 0 is a standard 
coefficient derived from a standard DSD model. It is 
necessary, however, to validate the estimated DSD parameter 
since the  estimate is subject to various errors such as non-
uniform beam filling and variation of surface back-scattering 
coefficient. On the other hand, if  provides the information 
of DSD, it would be extremely useful to improve the accuracy 
of radar rainfall measurement and to understand the 
climatology of cloud micro-physical processes [2-3]. 
In this paper, we present basic properties of  and 
corresponding coefficient a in Z = aRb relation where Z and R 
are radar reflectivity and rain rate, respectively, and a and b 
are coefficient and exponent in the Z-R relation, respectively. 
From such properties, we discuss the validity of the  estimate. 
 

2. DSD MODEL FOR TRMM PR 
 
Figure 1 shows the concept of the DSD model and estimation 
of  in the PR measurement. First we give a set of Z-R 
relations as DSD models. These models are converted to N0-  
relations assuming the gamma distribution with  = 3 fixed. 
Using these N0-  relations for various rain intensities, k = 

Ze  relations or  = 0 are calculated with the Mie theory.  
In the PR data processing algorithm called 2A25, an 
appropriate  is estimated from a comparison of Ze profile-
derived path integrated attenuation and that from the surface 
reference technique [1]. This process also provides an 
estimate of N0-  and Z-R relations. Thus the estimation of  
can be recognized as the estimation of a DSD parameter. Note 
that  = 1 corresponds to a standard DSD model (i.e. standard 
Z-R relation), and  < 1 and  > 1 correspond to DSDs having 
larger diameter and smaller diameter drops, respectively. That 
is, the larger the , the smaller the a coefficient in Z = aRb 
relation. This relation is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Concept of DSD model and  estimation in the PR data processing 
algorithm 2A25. 
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Fig.2: Relation between  (epsilon) and coefficient a in Z = aRb relation. 
“conv” and “strat” stand for convective and stratiform rains, respectively. 

 
3. GLOBAL DISTRIBUTION OF EPSILON. 

 
TRMM PR covers tropical to mid-latitude regions up to about 

36-degree latitude. Within this coverage,  shows 
climatological dependences as shown in Figure 3(a). It is 
clearly shown that over land  is smaller than over ocean, that 
is, DSDs over land contain more large drops than those over 
ocean. The land/ocean contrast is more evident in the summer 
hemisphere than the winter hemisphere. It is interesting that 
DSDs over tropical ocean are narrower than mid-latitude 
ocean regions. In Figure 3(b), monthly mean rain-top height 
derived from the PR measurement is shown. By comparing 
Fig.3(a) with (b) we find that high rain-top height generally 
corresponds to small  (i.e. large drop diameter). 
Similar to the   rain-top height correlation, it is found that 
the number of lightning, i.e. lightning activity, is well 
correlated with the DSD parameter  as shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4: Scattergram between number of lightning (3 months accumulation, 
averaged over 3 years 1998-2000) and  (3 month and 3 year average) in 

winter and summer seasons. 
 
In Figure 4, the “summer” means June-August in northern 
hemisphere and December-February in southern hemisphere.  
The “winter” is defined in reverse. From this figure, we find 
that “intense” convective rains associated with much 
lightning would produce large raindrops. This result is 
consistent with old (mid-latitude) [4] and recent (tropical) [5-
6] findings from disdrometer measurements. 
Recently Takayabu and Katayama [7] proposed a method to 
classify rainfall types from TRMM PR measurements. It is 
noted that evening shower over land and precipitation 
associated with low pressure system over ocean have 
relatively low  (large drops). See Figure 5. 
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Fig.3: Global distribution of DSD parameter (a)  and (b) rain-top height derived from PR 
measurements. January 1998, one month average. 
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Fig.5: Dependence of  on the Takayabu-Katayama [7] rainfall types 
 in June-August 1998. 

 
4. COMPARISON WITH DISDROMETER DATA 

 
Although the properties of  are in general reasonable from 
physical considerations, it would be necessary to compare 
with DSDs directly measured on the ground. Figure 6 shows 
examples of such comparisons where  is converted to a in Z 
= aRb (b = 1.43). Disdrometer measurements in South India 
and Singapore were conducted at Gadanki about 120 km 
northwest of Chennai, and at Nanyang Technological 
University (NTU), west edge of Singapore Island. 
Corresponding TRMM PR data ( ) were averaged over a 
month within 1-degree 1-degree area around the disdrometer 
site for 8 years from 1998 to 2005. As shown in this figure, 
seasonal variations of a from TRMM PR are well correlated 
with disdrometer counterparts. In this figure, comparisons 
over land area are shown. For ocean areas such as Kwajalein 
[8] and Kapingamarangi [9], correlation is not as good as land 
areas. Disdrometer-derived a is somewhat greater than that 
from PR. This may be due to the “island effect” on DSD 
properties. 
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Fig.6: Comparison of TRMM PR derived monthly mean a in Z = aR1.43 with 

disdrometer-derived ones in South India (Gadanki) and Singapore
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