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1. INTRODUCTION

Numerical methods for the two-dimensional scattering problems can be clas-
sified broadly into two categories: integral equation approach and modal
expansion approach. When we employ the formar, we usually formulate an
integral equation with respect to the surface current density. We then solve
the equation numerically with a careful consideration not to yield a resonance
solution and compute the scattered field by an integral over the cross section
of the scatterer. On the other hand, in the latter approach we find an appro-
ximation of the scattered field directly by fitting a truncated modal expan-
sion to the boundary condition of the problem.

The mode-matching method with a smoothing procedure (MMM with SP)[1-3]
which we presented as a powerful numerical technique for the problems with
smooth boundaries belongs to the latter: we can obtain the scattered field
without calculating the current density. However, we cannot neglect the
current density since it is an important physical quantity itself and is
sometimes required for engineering application.

In the following sections we state an approximation method for the current
density. The method is closely related to the MMM with the SP: the method
leads us to solve a set of linear equations being adjoint to one which, when
we employ the MMM with the SP, determines the coefficients of the scattered
field. That is, there holds a duality between scattered field approximation
by the MMM with the SP and current density approximation by the method of this
paper. The time factor exp(iwt) will be suppressed throughout.

2. FORMULATION OF THE PROBLEM

We consider a cylindrical scatterer made of a perfect electric conductor.
Figure 1 shows the cross section of the scatterer and coordinate system. We
assume that the contour C is sufficiently smooth and that it has a unit length.
When an E-polarized plane wave

i - = - -
E"(P) =i F(P), F(P) = expl ikopCOS(ep ) &)

hits the cylinder, a surface current flows along the z direction to induce a
scattered field Y(P) and hence the total electric field outside C becomes

o(P) = F(P) + ¥(P). (2)
The surface current density K(s), which we seek, is given by
K(s) = -Ciww) 130 (s) /3y (3)

where v is the coordinate along the inward normal to the contour C.
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3. METHOD OF NUMERICAL ANALYSIS

We state the method being adjoint to S
the MMM with the SP. First we put

j(s) = -iwpK(s) = 3¢(s)/ov, (4)

and we describe the approximation
method for the j(s) for simplicity.

We introduce the modal functions by
N ) .
¢m(P) H (kpp)exp( 1m6p)
m=0, #1, *2,... (5)

where () stands for the m order

second type Hankel function. Note that
they are radiative solutions of the two-
dimensional Helmholtz equation obtained
by separation of variables. Fig. 1 Geometry of the problem.

Since the contour of the scatterer is sufficiently smooth, the derivative
£(s) = dj(s)/ds (6)
+
is continuous and is orthogonal to comstants, (1,f)=0.

We define an approximate derivative fy(s) by
N *
= . 7
£() = Iy C (M) Ko "(s) (7
Here, ¢m* denotes the complex conjugate of ¢m[¢m*(s)=Hm(l)(kp)exp(ime)] and K
is an integral operator defined by

Ky(s) = &lK(s,t) P(e) dt, K(s,t) + (s-t) = -1/2 (s<t); =1/2 (s>t) (8)

Note that Ky(s) is an indefinite integral of ¥, (s)[=¥(s)-(1,¥)] and is ortho-
gonal to constants.

We decide the Cp coefficients so that fy(s) becomes the best approximation
of f(s) in the mean squares sense, i.e.,
| fy - f [| -~ minimum' (9)
under the constraint that
N -
(1, __y C,(Me *) = 0. (10)

We can prove that the sequence of the approximate derivatives {fN(s): N=0, 1,
2,...} with the coefficients determined by the above manner converges to the
true derivative in the mean squares sense. The proof is similar to that of

the convergence theorems stated in Refs. 1 and 2. Practically, the coeffici-
ents satisfying (9) and (10) are obtained by the following set of equations:

Iy S ,6)) + (1,6 )y, = <F,¢ > [n] <N

I C (N ,1) =0 (11)
Here, the double parentheses mean the inner product defined by

((9.9)) = (K¢, RY) (12)
+ The inner product is defined by (¢.9) = Il d*(s)W(s) ds.
4++ The norm is understood in the mean squares sense: ||w|| = (w,w)llz.
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which can be evaluated by a weighted double integral with a weighting kernel
Kz(s,t), the second order recurrent kernel of K(s,t).[1l,2] The vy coefficient
is defined by

vy = by - (L,3) (13

with py being the Lagrange multiplier corresponding to the constraint (10).
The notation <F,¢,> which also appeared in (11) stands for the reaction [4,5]
between F(P) and ¢,(P) and is given by

<F,¢n> = -4i exp[—in(ei + w/2)]. (14)
We make an approximation for the j(s) by putting

Bg(s) =KE() = vy = TN C (M) K'§ *(s) - vy (15)

where K2 means an iterative operation of K: ]KzljJ(s)= K( Xy) (s). We can prove
the fact that the sequence {jN(s): N=0, 1, 2,...} converges to j(s) uniformly
on the contour C, i.e., 0<s<1.

Next we show that a duality holds between the current density approximation
by the above method and the scattered field approximation by the MMM with the
SP.[1-3] We make an approximate scattered field by

N
‘PN(P) = Zn=—N An(N) (bn(P). (16)

The unknown coefficients are chosen so that the quantity |kK(YN + F)|| becomes
to be minimum under the comstraint that (1,¥y + F)=0. This leads us to solve
a set of linear equations which is strictly adjoint to (11) except that the
force terms become —((¢m,F))(|m|§:N).

Although we concentrated our discussion on the numerical method which is
adjoint to the MMM with the first order SP, we can establish the algorithms
which are adjoint to the conventional MMM [5] or the MMM with a higher-order
SP.[2] 1In the mext section we employ all of them [the p=0 method (adjoint to
the conventional MMM), the p=1 method (adjoint to the MMM with the first order
SP, the method in this section) and the p=2 method (adjoint to the MMM with
the second order SP)] for a sample calculation and compare the results.

4. NUMERICAL EXAMPLES AND DISCUSSION

We calculate the approximations for the j(s) by
the three methods on a surface of a scatterer whose y
cross section is composed of a semi-circle with the b
radius b and a semi-ellipse with the semi-majoraxis
a. The following results are obtained under the
conditions that a/b=1.5, kb=2.5899 and 9;=90°. The -b 0 a
shape of the scatterer is shown in Fig. 2.

In Fig. 3 we compare the rates of convergence of
the solutions obtained by the three methods. Note
that the sequence of solutions {le(O): N=8, 10,..} -b
approaches to j(0)=15.67 /54.7° more rapidly than
the sequence {jNO(O): N=8, 10,...}. Also the
Sequence {jNZ(O): N=8, 10,...} converges faster
than {jy1(0): N=8, 10,...}.

Fig. 2 The scatterer for
sample calculation.

Next we examine the three methods from the viewpoint of the extended

boundary condition: the secondary field Y(P) induced by the surface current
must cancel the incident field inside the scatterer. We define the error on
the extended boundary condition by
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EEBC(p,N)=max|F(P)+WNP(P)|/|F(P)|
PeD an
where D is a subdomain inside the L
contour C and the boundary of D is

similar to C with a ratio of simili-

tude 0.9. 1In (17), ¥NP(P) should be =T

calculated from the approximate & »2
current density through the usual —ul ,

integral representation using the

free space Green function. The "
resultant errors are EEBC(0,10)=3.3%, L a4
EEBC(1,10)=1.5% and EEBC(2,10)=0.8%.

We show in Fig. 4 the entire view
of the approximate current density
obtained by the p=0 (the dots) and
the p=2 (the solid curves) methods
with the number of truncation 10.

We find in this figure that the p=2
solution has almost converged while
the p=0 solution behaves oddly and

has not converged yet,
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It becomes clear from the above
discussions that the method with
the smoothing procedure (the p=1
and the p=2 methods) are effective Fig. 3 Comparison of the convergence
numerical algorithms for finding rates of jyP(0)(p=0, 1 and 2).

the surface current density.
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Fig. 4 Current densities obtained by the p=2 (solid curve) and the p=0
(dots) methods.
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