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Introduction

Eigenfunctions have widely been used in electromagnetic boundary value
problems when the boundaries coincide with coordinate surfaces in which the
Helmholtz equation is separable. Garbacz/L] has shown that similar character-
istic functions (modes) can be defined for bodies of arbitrary shape, and
Harrington and Mautz have systematized the theory from a different viewpoint
[2], and have developed & computational method[3]. Their characteristic
functions constitute an orthonormal set in Hilbert space on the infinitely
distant surface, but does not on the surface of the body itself.

This paper presents a set of eigenfunctions orthogonal and complete on
the conducting body. They are eigenfunctions of an Hermitian iterated operator
, which before the iteration gives the tangential electric field on the surface
due to the surface current. The characteristic equation can be simplified to
that of a real operator not iterated when the electromagnetic reciprocity
holds. Our theory gives a good computational accuracy even when the body does
not radiate, in which case the theory of Harrington et al. loses the applica~
vility. Illustrative examples are given to the numerical analyses of a dipole
and of a rectangular cylinder.

Characteristic equation

The boundary value problem is formulated as follows.
2(3) = -E, ()

vhere z denotes the integral operator giving the tangential electric field on
E%e surface of a perfectly conducting body S due to the current J on S, and
E” denotes the tangential component of the incident electric field.
Concidering sets of functions {Jn},{En} satisfying Z(Jn)=En, and defining the
inner product by the surface integral on S, we have

- = - = - o A= =

(Em,En) (sz,an) —-(Jm,z an) (Jm,xJn). (&)
Adopting a set of eigenfunctions of X as {jn} , we have

K3) =22 (3), L) =e,. W)

m n mn

From (2),(3) ana (&), (Em,ﬁn) - xnzcm (s),

where the eigenvalues of K are nonnegative cnd hence expressed as A 2 for
later convenience. Operating Z on Qoth sides of (3), we get the foilowing
equation considering the property X =zZzZ .

*

> (B o= 2%

K (En) An E . (6)

*

X and K ere Hermitian operators, and their singularities are lower than that
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of Z. Accordingly, J and E constitute orthogonal and complete sets on
S, and lead to the sollition of ?1) in the following form whose strong conver-
gence is gauranteed. -3
_ (E,E') _
Jd =« _Xz—Jn- (7
n n

When the medium,is isotropic, Z is a complex and symmetric operator, which
results in 2°=Z. Therefore from (3) and (6), we have E =uJ , with & being a
constant. From (4) and (5), we have |2|2=p £, As the Bhas® of a is arbitrary,
it is convenient to specify a to be Jkn. THen we have

=y = C
Z(Jn) n,3c (8)

Eq.(8) is equivalent to (3), and gives us a complete and orthonormal set on S.
A shift of phase in A_ by 28 gives a shift of phase in J by 6., ,Decomposing
2 and J_ into the real and imeginary parts as Z=R+jx T =8 +33 , (8) is
rewrittén in the characteristic equation of & real andnsyﬂmetrgc operator as

follows.
- ! 3 .
EORN X
n .
Dipole antenna

Eq.(8) has been transformed into a matrix equation by the moment method
{4). Dividing the antenna length ! into (2N-1) segments, and defining the
generalized impedance matrix Z, we can solve (9) by available computer
subroutines. For the center-fed dipole, the order of the matrix can be lowered
to N by taking into account the structual symmetry, and then the order of (9)
becomes 2N. Fig,l shows the convergence of {A } with N for k1=27,2=10 (k:the
free space phase constant), where eigenvalues 8¢ lower eight modes are shown.
Subdivision with N=32 is seen to give satisfactory approximation to the
integral equation (8). The change of {A } vs. k1 is shown in Fig.2 where N=32.
There appears a mode with exceptionally Bma11 eigenvalue vwhen kl=m and kl=3w,
Fig.3 shows the monotonic convergence of the input admittance with the number
of modes included in the calculation, which assures that there is no problem
in the calculation of higher modes with little radiated pover.

Rectangular cylinder

Similar computational procedures have been accomplished for a rectangular
cylinder whose side lengths are a and b with b/a=9/L. Both T™ and TE modes
are treated, and the order of matrices are lowered by a factor of four by
considering four kinds of symmetricity. Fig.l shows the convergence of {A }
with the subdivided length Ac for T™ mode and (++++) symmetry as illustrat®a
in the figure. The lower modes have larger eigenvalues in this case, and
converge if Ac/A<0.1., Figs 5 and 6 show (A } vs. kb for the symmetry illust-
rated in each figure. Some modes have zeroneigenvalues for specific kb, which
give the dispersion relation of ™M  and TE modes indicated below the abscissa,
These values agree with the exact value witffn 0.51% error for TM modes and
0.24% error for TE modes. No extraneous root is observed.
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Fig.6 Eigenvalues vs. kb(TE mode).

Fig.5 Eigenvalues vs. kb(TM mode).
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