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1.Introduction

A two-dimensional nonuniform sampling technique based on
matrix inversion algorithm was Rlenposed by Yahya Rahmat-Samiil
and Rudolf Lap- C in t paper "Nonuniform Sampling
Techniques for Antenna Applications™, IEEE Transactions on
Anternas and Pro tion, vol. AP-35, No.3, March 1987, p.268.
However this tec gue does not allow to obtaln accspiable
reconstiruction quality in the case of 1mpmper1¥ stipulated
matrices in presence of errors. Maximum Entropy Method (MEM) 1is
well known In the 1image reconstruction area as a  very
stabls-to-noise algorithm . But classical MEM suitable for
reconstruction of only real nomnegative distributions can not
be used In the case considered because far-field patterns are
described by complex functions. Therefore 1in this work
Generalized form o (GMEM) suitable for reconstruction of
functions of any tﬂg recently ;progosed by A.T.BaJkova ("Ths
Generalization of imum Entropy Method for Reconstruction of
Complex Functions®, Astronomical & Astrophysical Transactions,
1991, 1in }iaress) 18 used. In this paper a brief description of
the GMEM 1s given. Two effective approaches to reconstruction
are considersd. Numerical simulation resulis dsmonstrating
stabllity to errors of GMEM in comparison to matrix inversion
method ars shown.

2.Generalized form of Kaximumm Entropy Method for reconstruction
of complex functions

Classical can be re sented as the following
optimization problem b

min § r, In(r,), (1)
3Ty Al =A ket,...N (2)
r,>=0, 1=1,...,N, (3)

where a‘i‘ are constants, A, are known data, r, are unknowns.

In the case of complex unknowns 1t 1s proposed to
represent them in the following way

r,+3q,=(X;-¥,) + J(2,-7,), (4)
where
Ii! yii zi’ ?i >=0 (5)

— 697 —



and minimize the following functional
min § [T,|In|T,| + |q,]1n|qy|. (6)

where | = | 1s abscluts value of * .
Let o ¥yo 3y and \A meet the conditions
if r >0 then 3,0 = T,® X,,
if r,<0 then x,~0 = T,&-§,, (7)
ir q,>0 then v,20 = Q4® 2
1t q,<0 then 2,=0 = Q,& -V
in ordsr to excluds solution ambiguity caused by the function
of absolute value and representation (4).

If conditions (7) are satisfied expression (6) can be Te-
written as

min 3 xiln(xi)+y11n(yi)+z11n(zi)w1].n(vi). (8)

Let (8) be modified as
min 3 x,In(ax,)+y,ln(ay, )+z,1n(az, )+v,In(av,), (9)

where a 1s a positive parameter which can be chosen 1o
satisfy conditions (6).
Linear constraints derived from known data are

3(x,-3,)8% - (zi'vi)bli‘ = A (10)

Optimization blem (9),(10),(5) 18 similar to (1)-(3)
and can bea solved us well known methods (for exampls,
7 method). Terminal solution is determined according to
\

" The specitic feature of the solutlon 1s that X,, ¥,,» 24
and v, are connected by
Xy, = 2,v, = exp(-2-21n(a@)) = K(a).

It 1s clear that conditicns (7) are satisfied and
ambiguity of solution 1s excluded when K(a)=0, 1.e. a 1s of
sufficiently large value.

Thus new Generallized form of means special representati-
on of the sought for sequence in form of (4) and solution of op-
timization problem (9),(10),(5) with the appropriate value of a.

3.Two approaches to reconstruction of far-field patterns

Let complex two-dimensional far-field pattern be sampled
at a rate slightly higher than the Nygquist rate. It 1s requlred
to determine the value of this complex distribution atf any
}tJoint. Such an interpolation problem can be easily solved 1in

he cass of uniform sample distribution by wusing Sinc
interpolation functions. In the case of nonuniform distribution
it 1s proposed toc reconstruct far field values at uniformly
distributed gointa from given nonuniiormly distributed samples
by GMEM and then solve the interpolation problem for uniIorm

stribution. ILet us consider two approaches to solving
reconstruction problem. The first approach assumes
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reconstruction in the far-field pattern domain and the second
one assumes reconstruction in the dual (Fourier) domain.
In the first case corresponding optimization problem may
be writien as follows (for two-dimensional sequences)
min % 2 zmlln(axml)+ym11n(ayml)+zmlln(azml)+vmlln(avml)
nk nk _
2P Vm % = A & F%mVm)8m = B

X1 Yoo Zeyt Y =0

Tt =Ry V) + 3BV )
whers rml+3qml are unknown uniformly distributed samples with
coordinates (ﬁum.avl). where A, and A_ are the spacings between

adjacent uniform sampled points in the direction U and V of
(U-v) far-field domain "respectively, (1,m) are Integers;
Ank+;]BHﬁ are known samples at the points with coordinaies (a_,

ak); a1 = sin(Aumfah)sin(Avl—akJ/((Aum-an}(avlqak)).
In the second case optimization problem 1is
min g § xmlln(axml)+ymi1n(ayml)+zm11n(azm1)+vmlln(avm1)
nk

nk _
E §(xml—yml)aml B (Zml-vml)bml - An.ll:'
nk nk _
ﬁ E(xml_yml)bml ¥ (zml_vml)aml = Bnk'
Tt Ymr Zmye Y =00

Tt 300 = Xy Vg ) + 3(2p Ty )

where

alf=cos (2m(ma_/A Ni+la /A N2)),bRf=-sin(2x(mo_/A Ni+la, /A N2)),
where N1xN2 1S the size of map in pixels; A and B are real
and imaginary parts of measured samples at point (a ,a)

respectivelg. Sought for uniform far-field pattern distribution
1s found by Fourier transformation of @ complex sequence

The second approach 1in comparison to the first one
provides extrapolatlon ability. It means that 1n the second

case the same reconstruction quality can be achieved by lesser
number of measured samples.

4.Brror studies by numerical simulation

In this section resultis of the error sensitivity study of
both previous technique based on matrix inversion algorithm and
presented one based on Generallized Maximum Entro ethod are
shown. Nonuniformly samg%ed U-V grid of far-field pattern of
elliptical aperture 1is 1cted F1g.1. The region of U-V
coverage was chosen in ordsr to reconstruct main lobe and two
adjacent sidelobes of far field. The simulated random error
bounds are + 0.5 dB in sample magnitude and +0.03 degree 1n
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angular position of samples. Correggonding matrix to Dbe
Inverted, with elements pending only on sample sition
ggints. has condition numbser 31480. Obviously, t algorithm

sed on inversion of matrix with such a great condition number
is very sensitive to errors. As 1s seen from Fig.2. this
algorithm failed in the case of chosen level of errors. On the
contrary, presented technique based on Generallzed Maximum
Entrogy ¥ethod provides satisfactory reconstruction quality

(see F1g.3).
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5.Conclusion

In this paper new Generalized form of Maximum Entropy
Method suitabgg for reconstruction of complex functions hgs
been gresented for restoring antenna far-fleld patterns from
nonuniformly distributed samples. It has been shown, by
numerical simulation, that presented technique 1s much more
stable to measurement errors 1n comparison to previous one
based on matrix inversion algorithm.
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