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1. INTRODUCTION

Optimum beamforming with multiple linear constraints [1-6] is now a well
known technique in array processing. In the simplest case, a single
constraint is imposed [2] namely unity gain response in the beam steer
direction; the weight vectors are then calculated by minimizing the
beamformer mean output power subject to this constraint.

In general, in the design of beamforming systems, the choice of the phase
center coordinate origin is simply a matter of notational convenience and
the resulting structure of the designed system is independent of this
location. Surprisingly, this is not the case when constraint involving the
derivatives of the beampattern are employed [7].

This paper presents a technique based on a power response approach for
deriving a new set of constraints for controlling the beampattern spatial
derivatives. The new set of constraints ensure that the array beampattern
is independent of the choice of the phase center coordinate origin. It is
shown that for the first-order case, the constraint is linear, but for the
second-order case, the constraint is quadrative The paper also presents a
technique for approximating the effect of the quadratic constraint by two
linear constraints. It is shown that using these two set of linear
constraints, the dependency of the beampattern on the choice of the phase
center coordinate origin can not be totally eliminated, but the effect has
been very much reduced.

2. DERIVATION OF A NEW SET OF CONSTRAINTS BASED ON POWER RESPONSE APPROACH

The power response of a beamformer to a plane wavefront of unity amplitude
arriving from direction 6 is given by

p(fo, 0) =¥ S, S ¥ (1)

where W is the N-dimensional complex weight vector given by W = [w,, w,

i WN]T and Sy is the N-dimensional space vector given by Sg = [exp

(j2rfory), .... exp (j2rfDTN)]T. where {Ti. i = 1, 2; .. N} are the

propagation delays between the plane wavefront and the antenna elements
with respect to some reference point. The superscript H denotes complex
conjugate transpose.

In the vicinity of the look direction 65, p(fp. 6) can be expanded as a
Taylor series as follows
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It is clear that p(fo, 6) can be forced to be equal to p(fg, Bp) in a
maximum flat response sense by setting
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Let us now consider the first-order and the second order cases as follows.

For First-Order—Case, it follows from (1) that
2 WS S+ W S SN (4)
where S; is the first derivative of S, with respect to 6, evaluated at the

look direction 6g. Since V_IH Sy = 1, it is clear from (4) that the
necessary and sufficient condition for g% = 0 is that

Re [#8,]=0 (5)
For Second-Order-Case, it follows from (4) that

o s luas Sy (6)
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Again, since EH So = 1 and Re [L’H S:] = 0, it is clear from (6) that the

necessary and sufficient condition for E_; = 0 is that
ae
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3. APPROXIMATION OF THE EFFECT OF QUADRATIC OCONSTRAINT WITH LINEAR
CONSTRAINTS

The difficulty with the quadratic constraint defined by (7) is that the
constrained optimization problem becomes more difficult to solve. This
section presents a technique for approximating the effect of quadratic
constraint with two set of linear constraints.

Using real notation, the constraint given by (7) can be expressed as

T T
¥ Q¥ -P ¥ =0 (8)
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where Q = Dligi!. B = S Qrz with Dil and Drz given by Dix =: [&°A. g87A]".
D = |[2nfo gTAz + §T oA , 2mfo §TA2 - gT gt where ¢ and s are the
rs 36 a0
N-dimensional vectors given by, ¢ = [cos (2wfo T1), ... , cos (2wfo TN)]T,
s = [sin (27fo T1) , ... , sin (2wfo TN)]T and A, A% and g%-are the N x N
ar aTN
dimensional diagonal matrices defined by A = diag [ IR |
a8 ae
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respectively.

It can be shown that the quadratic constraint given by (8) can be
approximated by two linear constraints given by

i § = T _ 2
gii F‘I‘ =7 , Erz EI‘ = 21Tf0 o { (9)
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where v is a constant given by v = X |— 2 |—
i=1 |86 i=1 (80 J.

4. NUMERICAL EXAMFLES

To demonstrate the performance characteristics of the narrowhead beamformer
with the new set of linear constraints as formulated above, computer
studies involving the double-ring circular array shown in Figure 1 have
been carried out. The interring spacing was set at 0.25 Ag.

Figures 2 and 3 show the polar responses using the conventional set of
derivative constraints [4, 5] for the case where the phase center location
is chosen at the center of gravity of the array and at the first element of
the array, respectively. The source scenario was assumed to consist of a
90° desired signal of power O dB and a 180° interference of power O dB.
Uncorrelated noise at level of -30 dB was added. It can be seen that for
the zero order case, the performance of the processor is not affected by
the choice of phase center coordinate origin as expected. But for the
first and second order cases, the performances are remarkably affected by
the choice of phase center coordinate origin.

Figure 4 shows the polar responses using those set of linear constraints
derived in this paper for the case where the phase center location is
chosen at the first element of the array. The polar responses for the case
where the phase center location is chosen at the center of gravity of the
array are same as that in Figure 2. It can be seen from Figure 4 that for
the zero and first order cases, the performances of the beamformers are not
affected by the choice of the phase center location. For the second order
case, the dependency of the beampattern on the choice of the phase center
location has been very much referred.

5  OONCLUSION

The paper has presented a technique based on a power response approach for
deriving a new set of constraints for controlling the beampattern spatial
derivatives. The new set of constraints ensure that the array beampattern
is independent of the choice of the phase center coordinate origin. It is
shown that for the first-order case, the constraint is linear, but for the
second-order case, the constraint is quadratic. The paper then presented a
technique for approximating the effect of the quadratic constraint by two
linear constraints. It is shown that using these two set of linear
constraints, the dependency of the beampattern on the choice of the phase
center coordinate origin can not be totally eliminated, but the effect has
been very much reduced.
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