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A general class of spectral estimation algorithms have been recently
developed aimed at improving the degree of resolution achievable amongst
closely spaced spectral components. The traditional application of spectral
resolution in the frequency domain obtained from limited samples of data in
the time domain has been extended to the linear array of spatial sensors,
resulting in improved angular resolution (i.e., much less than A/D, where D 1is
the array length) of the angular source distribution between two or more
source wavefronts incident on the array aperture. Extensions of these
techniques to two-dimensional angular estimation have been sparse, and even in
these cases have been primarily developed for the array configuration.

The specific application in this paper considers the case where sources
of unknown locations, to be determined, exist over an angular field of view
(FOV) which is large relative to the half-power beamwidth characterized by the
antenna aperture diameter of interest, It is well known that, if HPBW denotes
the half-power beamwlidth of the maximum directivity beam realizable from the
given aperture size, then angular estimates of the source positions over the
FOV to within HPBW/10 angular tolerance is feasible, depending on the source
signal-noise ratio and measurement component imperfections present in the
estimation processor. For our application, the desired resolution and FOV of
interest is such that M non-overlapping beams, where M >> 1, of beamwidth HPBW
are required to unambiguously cover the FOV in question, Consequently if a
two dimensional array configuration is ewployed, a minimum of M elements are
generally required to unambiguously estimate the source scenario. Of course
array thinning techniques could be employed to minimize the number of elements
required, but for the case considered, even the number of thinned elements
would still lead to large processing requirements. As an example, consider a
FOV defined by a 36° cone angle relative to the array normal, If source
resolution on the order of 0.4°, say, is desired, then an aperture
characterized by HPBW =4° is required., This leads to an aperture diameter D,
on the order of 60A; filling, or even thinning, such an aperture with array
elements results in prohibitive processing requirements.,

This paper considers the processing simplifications which result in using
a multiple beam antenna (MBA) as the spatial sensor for spectral estimation.
The MBA configuration consists of an aperture (usually either a reflector or
lens) illuminated by a collection of feeds located in its focal plane,
followed by a switch network for selecting the outputs of any desired
feed-port. Since each feed port, when excited, illuminates the full aperture,
a set of narrow, fixed position "“spot” beams is produced by selectively
exciting the various feeds, where the KPBW of the individual beams is
inversely proportional to the aperture diameter, D/A, expressed 1in
wavelengths. Optimum coverage over a circular area is achieved by arranging
the feeds in a hexagonal lattice with the aperture diameter, focal length,
number of feeds and feed spacing selected so as to cover the desired FOV. As
an example, an aperture diameter of 68) using a 217 beam feed array provides
circular coverage over the 36° cone angle mentioned above with one degree
beams.

The two traditional estimation techniques are commonly known as the MEM

(Maximum Entropy Method) and the MM (Maximum Likelihood Method). Two
refinements to these have been labeled according to the acronyms MUSIC

-795—



(Multiple Signal Classification) and PEGS (Principal Eigenvector - Gram
Schmidt). The essential feature of these techniques is readily understood
graphically by noting that the two-dimensional spatial spectrum estimate
S(u,v) is given by

S(u,v) =

[ Wanee i

Wk gk(u,v)
k 1
where u and v denote the two dimensional pattern variables

_nDh
u = Y sin 6 cos ¢ ,

v = 1? sin 6 sin ¢ ,

where D = the aperture diameter, A = the wavelength, 8,4 = the pattern angles
and K denotes the number of output ports to be processed. The wy are an
appropriately selected set of weight variables unique to each algorithm, and
the gc(u,v) are the response functions for each antenna port (i.e., the
radiation pattern). When viewed in terms of antenna nulling, S(u,v) is the
inverse of the radiation power pattern placing nulls on the ianterference
sources. Hence the zeros (nulls) of the denominator in Eq. (1) correspond to
source location peaks, As 1is well known, the set {wk} placing nulls on J
sources is not unique, accounting for the differences 1in the various
estimation techniques. It should be emphasized that Eq. (1) is a computed
function, not measured, based on a kaowledge of the gy(u,v) and as such is
an "open-loop” estimate and subject to component and modeling errors.

The architecture proposed here utilizes an M-beam MBA, so that the
gr(u,v) in Eq. (1) are simply the radiation patterns (amplitude and phase)
for each beam port. If we denote by J the number of sources present over the
FOV, then we will develop an algorithm for which the processing requirements
for the MBA depend only on J and not on M. Consequently increasing M and D,
(resulting in enhanced resolution) although requiring a larger beam switching
network, has little impact on the computational load on the processor.

Development

For the following development, we assume the radiation pattern
characteristics of each beam port output are designed so that each beam
pattern has, say,less than 40 dB sidelobes outside the first null regions. As
a consequence, the hexagonal beam placement results in a maximum of three
beams coupled to a given interference source. Define P to be the M x ] vector
characterizing the long-term average of the power present at each beam port
output. Then P will take the form

E = [’Emlz] = col [O,O,X,X,"',X,OO-,O] (2)
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where Ep denotes the complex output of the mth port (assumed narrowband)
the X's denote a power level measurement above the sidelobe threshold, and
entries 40 dB below maximum are approximated as zero. Clearly P can have at

most K < 3J non-zero entries., Conventional estimates of the wy in Eq. (1)
could be derived from the M x M correlation matrix R given by

5k,q = E Eq * (3)

However, processing R in the form of Eq. (3) leads to prohibitive processing
requirements due to the large number of beamports. Note, however, that due
to the disjoint properties of non-adjacent beams, R contains at most K x K
entries above some arbitrary threshold. Hence it is useful to transform R
into a form where all computations can be performed in the K x K subspace,
independent of M.

Define T to be the transformation according to
P' =T+ P = col [X,X,*++,X,0,0,+++,0] (4)

where all non-zero entries in P are isolated in the first K rows., Similarly
define
E'=T+E . (3)

Then the matrix R', defined as E' E't, must take the form

K x K 0
.g.r;’: (6)
0 0

2o
1
=)

where the K x K subspace is now evident. Hence only K x K cross—correlations
need be measured, and the required K ports to be cross-correlated are
characterized by the matrix T. The cross—correlations are performed by a
switchable time-shared correlator, and the K switch settings required from the
M:1 controllable switches are thus controlled by T. Note that now only a
fixed M:1 switch network is required so that any feed port need be routed to
only a single output., Thus the switch design is conventional and straight-
forward. Thus the spectral estimation algorithms only require computations in
the K x K subspace.

It is readily shown that T is a matrix of only K non-zero entries, all of
which are unity. Although T"  does not exist, transformation back to "weight
space”, after performing computations in the K x K subspace, is given by

w=T - (N
where the w' are the K x K subspace weight controls. As a result, the sum in

the denominator of Eq. (1) is only performed over the K beams containing power
output above the threshold.
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Discussion

Space limitations prohibit detailed development of further processing
simplifications. One can show, however that the K x K subspace can be further
decomposed 1into a block diagonal form of approximately J overlapped
sub-matrices. A method of processing these sub-matrices will be presented
which tends to remove ambiguities inherent in the estimate when sources
overconstrain a given area, and further minimize the computational load on the
processor. Numerical examples resulting from a simulation program will then
be discussed.

*This work has been sponsored by the Department of the Air Force.

“The U.S. Government assumes no responsibility for the material presented,”
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