PROCEEDINGS OF ISAP 89 3A4_3

DESIGNING LINEAR ANTENNA ARRAY WITH BROAD SPATIAL NULLS

M H ER
School of Electrical & Electronic Engineering
Nanyang Technological Institute
Nanyang Avenue, Singapore 2263

1. INTRODUCTION

Array antennas constitute one of the most versatile classes of radiators
due to their capacity for beam shaping, beam steering, and high gain. One
of the most basic problems in array design is to determine the radiation
pattern of an array. Synthesis techniques for determining weights which
result in a desired pattern response for a given array have been available
for more than 40 years [1]. The great majority of this work has focused on
methods which result in patterns having prescribed mainlobe width and
reduced sidelobe levels.

In recent years there has been a considerable interest in designing antenna
array with broad null sectors [2 - 8]. The need for a broad spatial null
often arises when the direction of arrival of the unwanted interference may
vary slightly with time or may not known exactly, and where a comparatively
sharp null would require continuous steering for obtaining a reasonable
value for the signal-to—noise ratio.

In this paper, a technique for synthesising a linear antenna array pattern
with prescribed broad nulls is presented. The array pattern synthesis
problem is formulated as a least-square null constrained optimization
problem. Numerical techniques are also developed for reducing the
computational complexity of determining the optimal weight vector.
Numerical results are presented to illustrate the performance achievable.

2. PROBLEM FORMULATION AND SOLUTION

Consider a linear array of N isotropic antenna elements with uniform
spacing. The antenna far-field pattern is described by

C(f0.0) = W'S(fo.6) (1)

where W is the N-dimensional complex weight vector given by W = [w,, wa,

5 wN]T and §(f0.6) is the N-dimensional space vector given by §(f0.9) =

[exp(j2rfoTs)., ..., exp(j2wfoTN)]T. where {Ti, i=1,2, ..., N} are the
propagation delays between the plane wavefront and the antenna elements
with respect to some reference point. The superscripts H and T denote

complex conjugate transpose and transpose, respectively.

The array pattern synthesis problem is formulated as the following least-
square null constrained optimization problem:

minimize (W - ¥ )"(H - W) . subject to W QW C§ (2)
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where W, is a pre-determined vector obtained via say Chebyshev synthesis to
achieve a specified sidelobe level and Q is the NxN dimensional Hermitian
matrix given by

0,+A6/2
a- | S(f0.0)8(£o.6)d0 (3)

8,-A6/2

where A8 defines the spatial region in the interference direction 6, over
which a broad null is to be formed. £ (2 0) given in (2) defines the mean-
square null depth over the spatial region of interest.

The optimization problem defined in (2) can be interpreted as finding a
weight vector which is to be as close to Wo, as possible subject to an
integrated power constraint over the nulling sector.

Using the method of Lagrange multiplier, it can be shown that the optimal
weight vector W which solves (2) is given by

W= (I+aQ) W (4)

where a > O is the Lagrange multiplier for the quadratic constraint and is
the solution of the following equation

W (1 + 0Q)7lQ(I + Q) W, = £ (5)

The computational complexity of determining a that satisfies (5) can be
reduced significantly by using the matrix factorization method described
next.

Since Q is a Hermitian matrix, it can be factorized as, Q =T A FH, where T
= [Eiv Egs coins EN] is the NxN dimensional unitary matrix and A = diag[A,,

Nosr  wrsiivis hNJ is the NxN dimensional diagonal matrix.

Using the factorization of Q, (5) can be expressed as

W I+ ad) AT+ ad) i W = F (6)

Any root finding method can be used to solve for a that satisfies (9).
This was further found to be made very efficient by using the half interval
method followed by the regula falsi algorithm [9], as it has shown
excellent convergence properties.

3. APPROXIMATION OF QUADRATIC CONSTRAINT BY A SET OF LINEAR CONSTRAINTS

In the previous section, a numerical method based on a matirx factorization
is used to solve for the optimal Lagrange multiplier, for reduction of the
computational load. This section presents another approach to this by
approximating the quadratic constraint defined in (2) by a set of linear
constraints, also known as eigenvector constraints.

When Q has full rank or because, in practice, the eigenvalue evaluation

will not yield exactly zero eigenvalues, one can impose ng linear
constraints of the form

¥E =0 . 1=12 ....n 1)




where no is the smallest integer such that the percentage trace of the Q
matrix defined by

A  ng N
Ztr = ( 2 ?\i r 2 7\i} x 100% (8)
i=1 i=1

is greater than or equal to some threshold value.

Note that (7) can be thought of as a set of constraints that yield a small

value for EH Q ¥W. The value of ny determines the number of degrees of
freedom lost.

Replacing the quadratic constraint defined in (2) by the set of linear
constraint defined in (7), and using the method of Lagrange multiplier, it
can be shown that after some simplification the optimal weight vector is
given by

¥ = [I - D DW, (9)

where D is the N x np dimensional matrix given by D = [E,, E5, ..., E ]

4. NUMERICAL RESULTS

To demonstrate the performance characteristics of the new design approach,
computer studies involving a linear array having 20 equally spaced elements
have been carried out. The interelement spacing is set at 0.5\,. W, in
(2) is obtained by using Chebyshev synthesis to have a sidelobe level of
-30 dB.

Figure 1 shows the polar response using the quadratic constraint approach.
A controlled broad null at 6, = 30° with A8 = 5° (centred at 30°) and mean-
square null depth £ = 10 ° is designed. It is clearly shown that deep
nulls are achieved over the spatial region of interest at the prescribed
null position.

Figure 2 illustrates the polar response using eigenvector constraints. The
design parametes are the same as that in Figure 1 except that the quadratic
constraint is approximated by a set of eigenvector constraints. The value
of ny is chosen such that the percentage trace defined by (8) is > 99.99%.
It can be seen that perfect null depth of over 60 dB is achieved at the
prescribed null position over the spatial region of interest.

5. OONCLUSION

This paper has presented a new technique for synthesising linear antenna
array pattern with broad spatial nulls. The optimal weight vector is
obtained by matching to a pre-determined vector in a least-square sense
subject to an integrated power constraint over a nulling sector. Numerical
techniques based on the matrix factorization method have been proposed for
reducing the computational complexity of determining the optimal weight
vector. Subsequently, a set of eigenvector constraints are used to
approximate the effect of the quadratic constraint. Numerical results
showed that the proposed techniques are very effective in the design of an
antenna pattern, with a specified controlled null width and null depth.
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