
��������	
��
�

�������������	
�������
����������	����������������
�
�������	��������������

�����������������������
�
����
����	������

���������������� ��������������  !� ����"�#"���$����%�����!�
Department of Electrical Engineering

University of Rome “La Sapienza”
Rome, ITALY

[rodolfo.araneo, salvatore.celozzi, francesca.maradei]@uniroma1.it

�&#���"�� ' The propagation of high-speed
differential signals on interconnects is simulated by
means of SPICE-like equivalent circuits. Both
conductor and dielectric losses are accounted for,
along with the effects of dispersion. The suitability
and the accuracy of the proposed models for the
extraction of typical information required for the
design of interconnect, e.g. the eye-diagram and the
scattering parameters, is investigated.

��(� )���#: Interconnects, microstrip lines,
differential signalling, SPICE circuits, frequency-
dependent losses, effective permittivity.
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The full-wave numerical analysis of complex
configurations, at the on-board or on-chip level,
appears as the only reliable way of taking all
distributed effects, e.g. couplings and radiation, into
account. However every adjustment, either
geometrical and physical, which commonly occurs
during the design procedure, would require a new
full-wave simulation, resulting in a overwhelming
computational effort and in a lengthy process often
requiring some manual operations of trained and
expert personnel. Moreover the simulation of a
complete interconnect path could require more
computer resources than those available.

In this framework, the extraction of equivalent
lumped SPICE-like models to approximate the
electromagnetic behaviour of interconnects gain a
paramount importance in the preliminary design
stage for their friendly and efficient use.

The main goal of this paper is to propose
improved equivalent models of differential
interconnects for digital signal transmission
accounting for both conductive and dielectric losses,
along with frequency dispersion. In the wake of
previous studies [1], a careful analysis has been
conducted aimed at assessing the range of validity of
the approximate approach, with special attention to
its accuracy and suitability.

Critical aspects in the simulation concern the
accurate modelling of the influence of both dielectric
and conductive losses on crucial parameters either
preliminary, like the effective dielectric constant and
the characteristic impedance, intermediate, like the
scattering parameters, or tightly linked to the final

use and performance of the interconnect, like the eye-
diagram.

-+� �.���"���! ��!������
!�������!��������"����"�#�

The evaluation of the per unit length (p.u.l.)
parameters of differential interconnects is
traditionally performed by numerical methods such
as the finite element method or the method of
moments [2]. Nevertheless, the calculation by
numerical methods of the interconnect p.u.l.
impedance and admittance, for a wide frequency
range, would require a great computational effort. To
overcome this problem, an efficient mixed
analytical/numerical approach is adopted and
presented in the following.
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The p.u.l. impedance of the differential
interconnect shown in Fig. 1 is defined as:

ei ’Lj)(’Z)(’Z ω+ω=ω (1)

where )(’ ω�� is the frequency-dependent internal

impedance accounting for skin effect, and ��’ is the

external inductance. The internal impedance )(’ ω�

can be derived by approximate analytical expressions
[2], while the external inductance ��’ is calculated

by the procedure proposed in [3].
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The p.u.l. admittance of the differential
interconnect is defined as:

)(’Cj)(’G)(’Y ωω+ω=ω (2)
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where )(’ ω	 and )(’ ω
 are the differential
frequency-dependent conductance and capacitance,
respectively, which permit to account for dielectric
losses. The p.u.l. capacitance )ω′(C is given by

( ) ( ) ( )[ ]ωωε=ω′ odd
00eff Zc/C (3)

where ( )ωεeff is the so-called effective relative
dielectric constant, key parameter in any analytical
study due to its influence on several design
parameters, e.g. the characteristic impedance and

wave propagation constant, and ( )ωodd
0Z is the

frequency-dependent differential characteristic
impedance which can be computed as in [4]. The
effective permittivity of the dielectric substrate can
be obtained by means of the Kobayashi expression
modified as in [1]

( ) ( ) ( )
( )m50

effr
reff

f/f1

)0(

+
ε−ωε−ωε=ωε (4)

which models the dispersive behaviour of the
structure due to the rise of modes of higher order at
the increasing frequencies, when the wavelength
becomes comparable to the cross-section dimensions.
The analytical expressions for m and f50 in the odd-
mode case have been proposed in [1] and are not
reported here for the sake of conciseness. The
dielectric constant ( )ωεr has been computed
adopting the Debye model, whose validity has been
demonstrated by extensive experimental
measurements on typical commercial materials. A
single-pole form is considered, since it is generally
accurate enough for practical purposes. The values of
the model – i.e. the zero-frequency relative
permittivity sε , the relative permittivity at infinite

frequency ∞ε , and the pole relaxation time τ – can

be derived from measured data available in the data-
sheets of commercial products.

The equivalent transversal conductance ( )ω′G is
readily computed as [1]

( ) ( ) ( )

( )ω′′
ω′

≅ω′
ωα−

CL

10C2
G

e

20/d

(5)

where αd(ω) is the attenuation constant of the odd
mode in dB per unit length which depends on the loss
tangent ( )[ ] ( ) ( )ωε′ωε ′′=ωδ /tan of the dielectric
substrate [1].
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Two different techniques to account for
frequency-dependent losses are compared. The
frequency dependent p.u.l. parameters are used to
build up SPICE like circuits suitable for transient
analysis. The first circuit is based on the use of the
lossy TL model available in the SPICE library. The

second equivalent circuit is based on the Π-type
representation of the differential interconnect; the
modellization of the various admittances by simple
RLC circuits is obtained by applying a vector fitting
procedure.
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SPICE provides an efficient facility for the
simulation of lossy lines by means of a distributed
model, allowing freedom from having to determine
how many lumps are necessary for accurate results
and eliminating possible spurious oscillations. The
TLOSSY analog device requires the specification of
the p.u.l. capacitance and inductance as constants, but
allows the specification of the p.u.l. resistance and
conductance as general Laplace expressions. In this
way frequency-dependent effects can be modelled,
such as skin effect and dielectric losses, whose
simulation will be plainly explained, being the main
goal of the paper.

The modelling of the distributed losses has been
computed implementing the formulas presented in
the previous sections; the frequency-dependent
Debye and the modified Kobayashi models for the
characterization of the dielectric substrate, and the
analytical expressions given in [2] for the conductive
losses.

The p.u.l. differential capacitance and
conductance read respectively

.FUNC C(s) { 1/C0*sqrt(EPSeff(s))/Z0}

.FUNC G(s) {2*C(s)*ALFA(s)*pwr(sqrt(Le*C(s)),-1)+s*(C(s)-CI)}

where � is the Laplace variable, EPSeff(s) is the
effective relative dielectric constant as in (4), Le is
frequency-independent external p.u.l. inductance and
CI is the constant capacitance corresponding to the
infinite frequency permittivity. It should be noted
that, in the definition of the function G(s), it has been
added the last term which is necessary to model the
frequency-dependence of the p.u.l. capacitance, since
the capacitance must be set as constant in the
TLOSSY model.

The conductive losses have been accounted for by
means of a frequency-dependent p.u.l. resistance
which reads

.PARAM F0={ (1/2*(w*t)/(w+t))**(-2) / (PI *MU0 *sigma)}

.FUNC RL(s) { Rdc*(1+JOTA*F(s)/F0) }

.FUNC RH(s) { Rdc * sqrt(F(s)/F0) * (1+JOTA) }

.FUNC UNIT_STEP_P(s) {0.5*(1+sgn(abs(F(s))-abs(F0))) }

.FUNC UNIT_STEP_N(s) {0.5*(1+sgn(-abs(F(s))+abs(F0)))}

.FUNC R(s) {RL(s)*UNIT_STEP_N(s)+RH(s)* UNIT_STEP_P(s)}

where RL and RH are respectively the low and high
frequency parts of the p.u.l resistance and F0 is the
cut-off frequency. Finally the TLOSSY analog
device has been defined as

TLOSSY 2 0 3 0 LEN=1e-2 R={R(s)} G={G(s)} L={LI} C={CI}

in order to model the propagation on the differential
interconnect, in frequency or transient analysis.

�����

���



�

0+-� �2,!������� �!�",!�� ��#��� ��� �.�� 3�"�����
�!��!�4����"��,����

The differential interconnect of length � can be
represented by the equivalent Π-type circuit shown in
Fig. 2 where the frequency-dependent admittances
are given by:

( )�)(’Y)(’Zsinh)(’Y/)(’Z

1
)(Y1

ωωωω
=ω (6a)

( )
( )�

�

)(’Y)(’Zsinh)(’Y/)(’Z

1-)(’Y)(’Zcosh
)(Y2 ωωωω

ωω
=ω . (6b)

By applying the vector fitting procedure [5], the
generic admittance )(Yk ω , with k=1,2, can be
approximated by the following rational expressions:

∑
=

−ω
+ω+=ω
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where �� is the order of the approximating function,
and 
� � 	 and � � � 	 are the �-th residue and pole,
respectively. The rational function (7) can be easily
represented by an equivalent RLC network suitable
for direct implementation in CAD circuit simulator.

To derive the equivalent circuit, let indicate �� �
the number of real poles and �� 
 the number the

complex conjugate pairs. )(Y
~

k ω can be written as:
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(8)

where the asterisk denotes complex conjugates. The
equivalent circuit associated with (8) is given by the
parallel connection of the following branches:
• a conductance 	 � � � =� � ;
• a capacitance 
 � � � =�� ;
• �� series circuits associated with the �� � � real

poles, whose parameters are (see Fig. 3a):

i,ki,k c/1La =

i,ki,ki,k c/aRa −=

• RLC circuits shown in Fig.3b associated with
the �� 
 � complex conjugate pairs, whose
parameters are given by:

�
2(ω)

�
2(ω)

�
1(ω)

� � � � � � � � � � ! # $ % & '
Π (

' ) + % . % + . % 0 % & ' # ' � 1 & �

3 # 5 3 6 5
� � � � 7

(
� � � � ! # $ % & ' 8 � . 8 � � ' 0 8 1 . . % 0 + 1 & ; � & � ' 1 . % # $ + 1 $ % 0 3 # 5

# & ; ' 1 8 1 A + $ % B 8 1 & D � � # ' % + # � . 0 3 6 5 �

(9)
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The discussed SPICE-like models are used to
analyze the differential interconnect characterized by
�=1 mm, �=0.5 mm, �=0.01 mm, and �=1 mm (see
Fig. 1). The strips are assumed of copper, and the
FR4 dielectric substrate is modeled assuming εs= 4.5,
ε∞= 4.19 and τ = 0.949 ns. The variation with
frequency of 	’(ω) and 
’(ω) of the described
differential interconnect are shown in Fig. 4.

The vector fitting procedure [5] applied to the
admittances of the Π-type equivalent circuit, yields
satisfactory approximating functions (see Fig. 5)
using two real poles and a complex conjugate pair
whose values are reported in Tab. I.

The differential interconnect shown in Fig.1 is
considered matched at both ends and driven by a
clock source characterized by rise and fall times
equal to 50 ps, pulse width 1ns, and period 2 ns. Fig.
6 shows the comparison between the transmitted
voltage waveforms computed by means of the
lumped circuit and the lossy TL SPICE model. The
agreement is reasonably good; the result of the
lumped circuit approach is only affected by small
spurious oscillations along the falling front due to the
fitting procedure which has been carried out up to 10
GHz. Extending the frequency window where to
apply the fitting procedure, oscillations will reduce at
the extra-cost of additional branches in the equivalent
circuits.

���"�,#!��#�
Two SPICE-like models of differential interconnects
have been proposed accounting for frequency-
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dependent conductive and dielectric losses. The
comparison between the results of the two SPICE
models has shown a good agreement. Nevertheless,
the lumped circuit model obtained by the vector
fitting is more efficient since the required CPU time
is much less than the time required to compute the
impulse response of the lossy TL in a transient
analysis. The extra-cost of the vector fitting
procedure is worthy as far as a few trials are required.
This aspect is very important when dealing with
complex configurations in which hundreds of
interconnects links more complex devices. Moreover,
the lumped circuit approach can be easily extended to
the analysis of complex interconnect configurations.
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