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1. Introduction

It is known that the use of dual polarizations can enhance the performance of direction-of-
arrival (DOA) estimation in array processing when the sources have different polarizations
[1, 2]. Recently, polarization diversity has also found applications in nonstationary signal
array processing problems [3]. In [4], the spatial and polarimetric correlation charac-
teristics have been investigated for double-feed dual-polarized arrays (referred to as dual-
polarized array hereafter), and their performance was compared to that of single-polarized
arrays with twice the number of array sensors.

In this paper, we use the spatial and polarimetric correlations to consider the perfor-
mance of single-feed linear arrays consisting of alternating circularly polarized antennas
(referred to as diversely polarized array hereafter) for DOA estimations of linearly polar-
ized sources. The spatio-polarimetric correlation coefficients and the DOA estimation
performances are compared to those of the double-feed dual-polarized arrays. It is shown
that, while an diversely polarized array shows comparable spatial and polarimetric reso-
lution when two sources have close spatial signatures, it may produce grating lobes in the
spatio-polarimetric correlation coefficients and, subsequently, false spectrum estimations
in DOA estimations. Such problem can be avoided by using smaller interelement spacing
at the expense of array aperture reduction.

2. Signal Model

Consider L narrowband linearly polarized signals that arrive at a linear array of N sen-
sors. We consider three types of array sensors: dual-polarized antennas (denoted as D),
diversely polarized circular polarization antennas (denoted as C), and single-polarization
(vertical) antennas (denoted as S). A diversely polarized array uses alternating left-hand
and right-hand circularly polarized antennas. For simplicity of analysis, N is assumed to
be even so that the same number of left-hand and right-hand circular antennas are used.

For a dual-polarized array, the received signal vector at is expressed as

xD(t) =

[
x

[v]
D (t)

x
[h]
D (t)

]
, x

[i]
D(t) = As[i](t) + n[i](t), (1)

where [i] denotes the polarization with i = v (vertical) or h (horizontal), s[i](t) and n[i](t)
are, respectively, the source signal vector and the noise vector of polarization i, and A
is the structured mixing matrix which is independent of polarization. The lth column
of A is the steering vector of lth signal, expressed as al = [1 e−jθl · · · e−j(N−1)θl ]T for
l = 1, · · · , L where T is the transpose operator and θ = (2πd/λ) sin(φl) with d denoting
the interelement spacing, φl the DOA of the lth signal, and λ the wavelength.
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Denote P[i] = diag[p
[i]
1 , · · · , p

[i]
L ] with

p
[v]
l = cos γl and p

[h]
l = sin γl ejηl (2)

being the polarization coefficients of the lth source, where γl is the polarization angle that
determines the magnitude ratio of the two polarizations, and ηl is the phase difference
between them. In this paper, we only consider linearly polarized signals, i.e., ηl = 0 for

all sources. It is clear that pl = [p
[v]
l p

[h]
l ]T has a unit norm. Using the definition of P[i],

we have s[i](t) = P[i]s(t) where s(t) is the source signal vector. Then, the second part of
(1) can be rewritten as

x
[i]
D(t) = y

[i]
D(t) + n

[i]
D(t) = AP[i]s(t) + n[i](t). (3)

For the diversely polarized and single-polarized arrays, the received signal vectors
become

xC(t) =
1√
2

[
AP[v] + jDAP[h]

]
s(t) + n(t), (4)

xS(t) = AP[v]s(t) + n(t), (5)

respectively, where
D = diag[1 − 1 · · · 1 − 1] (6)

is a matrix reflecting the polarization alternations.

3. Spatial and Polarization Correlations

For a single-polarization array, it is well known that the spatial correlation between two
sources l and m is defined as the normalized inner product of their steering vectors

βS:l,m =
1

N
aH

l am, (7)

where the superscript H denoted complex conjugate transpose. Note that, for a single-

polarized array, there may be a polarization loss (p
[v]
l ), depending on the polarization of

the source signal.
For a dual-polarized array, the joint spatio-polarimetric correlation coefficient between

two sources is obtained as [4]
βD:l,m = βS:l,m ρl,m, (8)

where ρl,m = pH
mpl is the polarization correlation coefficient between sources l and m.

For the underlying situation where both sources are linearly polarized, the polarization
correlation coefficient reduces to

ρl,m = cos(γl − γm). (9)

Because |ρl,m| ≤ 1 and the equality holds only when the two sources have the same
polarization, it can be concluded that a dual-polarized array can always reduce the spatio-
polarimetric correlation coefficient compared to that of the spatial correlation coefficient
of the corresponding single-polarized array. In addition, the dual-polarized array does not
have a polarization loss because both polarization components are captured.

For the diversely polarized array, the equivalent spatio-polarimetric signature of the
lth signal is obtained from (4) as (The factor of 1/

√
2 is omitted for convenience so that

the norm of aC:l remains to be N . It does not affect the spatiao-polarimetric correlation.)

aC:l = alP
[v] + jDalP

[h]

= ȧl

[
P[v] + jP[h]

]
+ äl

[
P[v] − jP[h]

]
= ȧle

jγl + äle
−jγl,

(10)
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where
ȧl = [1 0 e−j2θl 0 · · · e−j(N−2)θl 0]T

äl = [0 e−jθl 0 e−j3θl · · · 0 e−j(N−1)θl ]T
(11)

are the steering vectors of the subsrray consisting of antennas with only the odd and
even index numbers, respectively. It is clear that ȧl and äm have a norm of 2/N and
are orthogonal for all l and m. Therefore, the spatio-polarimetric correlation coefficient
between sources l and m is obtained as

βC:l,m =
1

N
aH

C:laC:m =
1

N

[
ȧle

jγl + äle
−jγl

]H [
ȧmejγm + äme−jγm

]
=

1

2

[
β̇l,mej(γm−γl) + β̈l,me−j(γm−γl)

]
=

1

2
β̇l,m

[
ej(γm−γl) + e−j[(θm−θl)+(γm−γl)]

]
,

(12)

where

β̇l,m =
2

N

[
ȧH

l ȧm

]
and β̈l,m =

2

N

[
äH

l äm

]
= β̇l,me−j(θm−θl). (13)

Therefore,

|βC:l,m| =
∣∣∣β̇l,m

∣∣∣
∣∣∣∣cos

[
θm − θl

2
+ (γm − γl)

]∣∣∣∣ . (14)

When the two sources are closely spaced (i.e., θm − θl is small), |β̇l,m| ≈ |βS:l,m| and
cos [(θm − θl)/2 + (γm − γl)] ≈ cos [(γm − γl)] (unless γm and γl are close to be orthogo-
nal), resulting |βC:l,m| ≈ |βD:l,m|. Therefore, the diversely polarized array has comparable
performance to that of the dual-polarized array. It is evident, however, that a diversely
polarized array with half wavelength interelement spacing cannot avoid the grating prob-
lem when the spatial separation between the two sources increases, because the spatial
correlation β̇l,m is defined at a spatially decimated subarray (i.e., the interelement spacing

of the subarray is 2d). The spatial angles of a grating lobe are determined by |β̇l,m| = 1
whereas the polarization angles are given by γm − γl = kπ − (θm − θl)/2 with k denoting
an integer.

To avoid the grating problem, the diversely polarized array must be spatially over-
sampled such that d ≤ λ/4. To maintain the same aperture as that of a dual-polarized
array that does not require spatial oversampling, roughly, twice the number of array ele-
ments are required for the diversely polarized array. In this case, the spatial-polarization
correlation coefficient of the 2N -element diversely polarized array is comparable to that
of the N -element dual-polarized array in the statistical sense. The spatio-polarimetric
correlation coefficients of these two arrays, however, have different shapes because the
spatial and polarimetric differences are not decoupled in (14).

4. Numerical Results

We first consider the spatio-polarimetric correlation coefficients for both the diversely
polarized and dual-polarized arrays. Fig. 1(a) and Fig. 1(b) depict the former whereas Fig.
1(b) illustrates the latter. Parameters are shown in these figures. The spatial correlation
coefficient of a single-polarization linear array can be obtained by letting γ1 = γ2 in Fig.
1(c). The white ‘+’ mark in each plot indicates the first source. All these plots show
similar coefficients around ‘+’ (i.e., the signatures of the two sources are close), but apart
from this region the difference is clear because in Fig. 1(a) there is a grating area which
the other two do not have.

Next, we compare the MUSIC spectra of the three arrays to confirm the usefulness of
the spatio-polarimetric correlation in determining the DOA estimation performance. Fig.
2 shows the results as well as the parameters we have used. The spatial resolutions of
all three arrays are comparable, but the diversely polarized array with half-wavelength
interelement spacing shows false spectra because of the grating problem (Fig. 2(a)).
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(a) Diversely polarized (b) Diversely polarized (c) Dual-polarized
N=6, d = λ/2 N=12, d = λ/4 N=6, d = λ/2

Figure 1 Spatial-polarization correlation coefficients versus the DOA φ2 and
polarization angle γ2 of the second source (φ1 = 10o, γ1 = 45o).
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(a) Diversely polarized (b) Diversely polarized (c) Dual-polarized
N=6, d = λ/2 N=12, d = λ/4 N=6, d = λ/2

Figure 2 Comparison of MUSIC spectra (SNR=10dB, 256 samples,
φ1 = 10o, φ2 = 5o, γ1 = 45o, γ2 = 90o).

5. Conclusion

We have investigated the spatio-polarimetric correlation characteristics of a diversely
polarized array that uses single-feed antennas of alternating circular polarizations. Such
an array requires spatial oversampling to avoid the grating problem. The performance
of a diversely polarized array with 2N sensors and d/2 interelement spacing is compara-
ble, in the statistical sense, to that of an N -sensor double-feed dual-polarized array with
interelement spacing d.
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