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1. Introduction 

  The design of high-speed circuits in modern IT and 

communication systems relies on strict signal 

specifications, noise and interference limits well up 

to microwave frequencies. What hitherto had been 

simple wiring where the only consideration had been 

the correct circuit topology, has now become an 

important part of design encompassing disciplines 

such as RF and microwave design. It is not an 

exaggeration to say that designs are now interconnect 

rather than device dominated. The requirements to 

make numerous connections in a limited space with 

the minimum of cross-talk and minimum signal 

distortion are extremely challenging for designers. 

 At relatively low frequencies, models of 

interconnects may be constructed using a few lumped 

elements. Simple RC models may suffice at low-

frequencies with the addition of inductances for 

models in the 10s of MHz frequency band. At higher 

frequencies in the 100s of MHz region, propagation 

effects and associated time delays become important 

and full-field models are necessary for accurate 

modeling. As a rule, full-field modeling requires a 

spatial resolution at least as good as a tenth of the 

lowest wavelength of interest. For circuits clocked at 

2 GHz interconnect characterization to encompass 

several harmonics is required. This is in itself a 

formidable computational task. However, an 

additional challenge is presented by the need to 

model accurately the geometrical and material details 

of the interconnects and associated source, load and 

adjacent circuits. These features are normally much 

smaller than the wavelength but must nevertheless be 

modeled accurately. This is a classic multi-scale  

problem and a major challenge for the modeler. 

Efficient solutions to this problem must be found 

before simulation of complete practical systems can 

take place. The aim of this paper is to discuss 

approaches to this problem and to present the Modal 

Expansion Technique (MET) as an efficient multi-

scale modeling method. 

  In the next section we present the conventional 

approaches to wire modeling, followed by a section 

describing the MET approach. Results are also 

shown together with the outlook for whole system 

modeling at high-frequencies 

 2. Conventional Approaches to Multi-scale 

Modelling 

2.1 Multi-grid and Hybrid Meshes 

  The straightforward response to the requirement of 

modelling fine features in a general numerical mesh 

is to have a fine mesh only where it is needed (e.g. 

around a thin wire) and a coarse mesh elsewhere. 

This gives  a multi grid-mesh as shown in Figure 1a.  

Fig. 1 Schematic of a multi-grid (a) and of a hybrid  

mesh 

Several techniques of interfacing at the fine-coarse 

junction have been developed [1]. In the time-domain 

,which is most suited to broad-band characterization,  

it is clear that this interface needs to implement some 

form of time and space averaging. This can be 

problematic leading to instabilities in many such 

schemes. Similarly as the fine and coarse meshes 

have a different capacity to propagate high-frequency 

signals the fine-coarse interface is effectively a 
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discontinuity causing numerical artifacts. 

Nevertheless such schemes have been developed and 

used in research codes. 

 An alternative approach is illustrated in Figure 1b. In 

this, the so called hybrid mesh, the mesh is made 

finer in the desired location, but distorted shape mesh 

is established well beyond the area where a fine 

resolution is required. The advantage of this mesh is 

that across all interfaces there is one-to-one 

correspondence in space and in time and hence no 

averaging is required. These schemes are stable and 

effective but result in a smaller time-step determined 

by the aspect ratio of the computational elements. 

More details and original references may be found in 

[2]. 

Both these schemes distort the mesh in order to 

accommodate fine features. It would appear 

profitable to maintain a background mesh determined 

by global consideration and interface the fine features 

(e.g. a thin wire) to the mesh using knowledge of 

local field behaviour in the vicinity of the fine 

feature. This option is explored in the next sub-

section. 

2.2 Interfacing Static Wire Solutions to a Coarse 

Mesh

  The ground rules for interfacing thin wires to a 

coarse numerical mesh were described in [3]. The 

essence of this approach is that near a wire the 

electric and magnetic field may be approximately 

related to the current and electric charge on the wire 

using, 
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It can be shown that at some reference return 

conductor radius r0 the electric field for a z-directed 

wire is related to charge and current by, 
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where, Ld, Cd, are the inductance and capacitance per 

unit length between the wire of radius ‘a’ and a 

return at radius r0 to be determined. This radius is 

approximately the half the mesh size but for 

maximum accuracy must be empirically determined. 

An example of the empirical factors involved for 

TLM models is shown in equations (3) where 2  is 

the mesh resolution, 
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 There are moreover restrictions imposed on the 

maximum wire radius which may be thus modeled as 

a fraction of the mesh resolution. The most serious 

limitation of this formulation is the requirement, 

inherent in the use of static symmetrical solutions for 

the field near the wire, that the wire is located 

centrally inside the basic computational element. 

True route wire placement is not possible. A 

consequence of this  is that multiple conductors (wire 

looms, closely spaced tracks) cannot be accurately 

modeled as they all appear centrally located 

irrespective of any adjustments made to their 

inductance and capacitance matrices to account for 

the actual relative placement. Critical timing 

information is thus lost which at high frequencies 

makes the calculation of common-mode currents, 

glitches etc difficult to predict accurately. Yet, this is 

exactly the situation (closely packed interconnects) 

found in practical high-density high-speed circuits. 

 Notwithstanding these limitations, the quasi-static 

approximation described above is widely used in 

TLM and FDTD models both for single and multi-

conductor systems [1]. 

 In the next section we describe the MET approach 

which removes most of the limitations identified 

above and thus offers the prospect of accurate and 

efficient computation in practical systems. 

3. The Modal Expansion Technique (MET) 

  The formulation described above uses the quasi-

static approximation to provide a link between the 

wire and the surrounding mesh. This is an 

approximation which however can be improved if a 

more complete wire solution is employed. Such a 

solution is available in the literature based on an 

infinite number of modes. For a z-directed wire, 
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where, J and N are Bessel and Neumann functions 

and a is the wire radius. It is clear that the quasi-static 

solution is only one term in a full modal expansion of 

the field around the wire. If one were to include more 

than one mode in the interface between the wire and 

the numerical mesh, then a greater accuracy and 

flexibility should result. The theoretical development 

of this interface (MET) is described in more detail in 

[4]. We describe here the two-dimensional case as it 

illustrates the essence of the MET. 
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 The first question to address is the number of modes 

that may be included in the model. Considering that 

there are four sampling points (ports) in a 2D mesh, it 

is clear that four modes can be included in contrast to 

the conventional approaches which account for only 

one (quasi-static) mode. It seems physically 

reasonable to select the four lowest modes, n=0, 1, -

1, 2. The general approach to seeking a solution is to 

calculate the impedance seen by each mode of the 

field at the boundary of the computational element 

(node). The electric and magnetic field are related by 

an admittance operator, 

ŶE H                                                         (6) 

the structure of the admittance operator and its 

eigenvalues n may be found more simply by 

physical reasoning. Sampling modes n=0, 1, -1, 2 at 

the ports located at angles =0, /2, , 3 /2 gives the 

following matrix relating voltage at its sampling 

points to its modal components, 

1/ 2 1/ 2 0 1/ 2

1/ 2 0 1/ 2 1/ 2

1/ 2 1/ 2 0 1/ 2

1/ 2 0 1 2 1/ 2

U       (7) 

 where the mapping between voltage samples V their 

modal components X is, 

V U X                                                      (8) 

The eigenvalues are essentially the admittance seen 

my each mode at the node boundary and thus can be 

obtained from equations (4) and (5), 
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Applying the usual low-frequency approximations to 

obtain small argument expansions for the Bessel 

function one obtains the following expressions for 

the impedance seen by each field mode, 
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based on these expressions a 2D shunt TLM mesh 

may be devised to study TM propagation as shown in 

Figure 2. 

Fig. 2 Schematic of a 2D node with a centrally placed 

fine wire (Z is for link lines, Zs for the stub) 

Based on the approximations in (10), the parameters 

of this node are, 
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In these expressions ZL is the impedance of the 

standard TLM nodes surrounding the node 

containing a fine wire. Certain advantageous features 

of this formulation are already apparent: 

The formulation is simple and incurs a 

minimum of computational cost. 

Since four modes are included and some of 

these are asymmetrical (see (7)) the wire can 

be accurately positioned away from the 

center of the node. This generalization has 

been implemented using the properties of 

the Bessel addition theorems. 

There are no empirical factors involved or 

restrictions on the diameter of the wire. The 

algorithm has been tested successfully for 

wire radii up to .

The MET should be more accurate that 

solutions based on quasi-static solutions 

alone. This is to be expected as four modes 

are taken into account and can be seen 

intuitively from Figure 2-conventional 

approaches only have a correction based on 

a stub which can only produce delay. The 

MET also changes the link-line impedance 

(to Z rather than ZL ) thus offering an earlier 
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reflection than possible from a centrally 

placed stub. These comments are confirmed 

by tests of the algorithm. 

Multi-conductor problems may also be dealt with 

using the MET. A typical problem is of several 

closely packed wires in an interconnect which all lie 

within a single node. We show the case of two thin 

wires inside a single computational element centered 

at the coordinate axis in Figure 3. 

Fig. 3 Two wires in close proximity inside a node 

The electric field on the surface of wire 1 is the sum 

of the incident field, the field scattered from wire 1, 

and the field scattered from wire 2, i.e. it is in the 

form, 
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 Demanding that at the surface of each wire the 

tangential component for each mode is equal to zero 

permits the calculation of the unknown coefficients 

and the impedances seen by each mode in a manner 

similar to that already described. In this way multi-

conductor systems can be accurately modeled. 

 A MET formulation for a centrally placed thin wire 

in a three-dimensional model is described in [4]. 

4. Illustrative results 

  We show some results in Figures 4 and 5 to 

illustrate the effectiveness of this approach. 
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Fig. 4   Electric field near a thin offset wire 
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Fig. 5 Electric field near a thin dielectric coated wire 

In both figures the electric field is shown near (2 

nodes) and far (8 nodes) from the fine feature. In 

Figure 4 the thin wire (a=0.1 ) is offset from the 

center of the node along a diagonal by a distance 

0.5 . In Figure 5, a node centered dielectric coated 

wire (a=0.25 , dielectric thickness=0.25 , r =50) is 

modeled. The results from MET and analytical 

results are compared and show excellent agreement 

even for frequency above fmax corresponding to ten 

nodes per wavelength. 

7. Conclusions 

  The basic modeling procedures for accurately 

describing complex wiring structures and 

interconnects in full-field codes without incurring 

excessive computational penalties was presented. 

Results show excellent agreement with analytical 

formulations. Work is in progress to extend the 

technique to encompass a general arbitrary placement 

of wires and wire clusters in three dimensions   
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