
A Frequency-Dependent Transmission-Line Simulator Using S-

Parameters

Jose E. Schutt-Aine

Department of Electrical and 

.Computer Engineering

University of Illinois at Urbana-

Champaign

1406 W. Green Street

Urbana, IL 61801, USA

e-mail: jose@emlab.uiuc.edu

Abstract: In this study an efficient approach is presented for
the transient simulation of lossy, frequency-dependent multicon-
ductor transmission lines. The method is based on the approxima-
tion of the modal scattering parameters of the system. Rational
function approximation and recursive convolution are used to gen-
erate the time-domain stamps of the multiconductor system
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Introduction

The simulation of transients on coupled interconnects has received
extensive attention during the past decade.  Recently, the focus has
shifted towards the ability to simulate lines with frequency depend-
ent parameters.  As a result of losses and higher frequency opera-
tion, this frequency dependence can no longer be ignored. The
treatment of frequency-dependent coupled lossy transmission lines
was covered in [1] in which approximations were performed on the
propagation function and characteristic impedance matrices using
an interpolation scheme.  More recently, an enhancement of the
method was proposed by [2] that improves the approximation of
the propagation function matrix when the skin effect in the lines is 
significant.

One key element in the success of the methods in [1] and [2] is the
matrix delay separation scheme that allows the approximation of a 
delayless modal propagation function matrix. When the frequency
dependence of the line parameters are significant the accuracy of
the scheme cannot always be guaranteed. In this study, we apply
the approximation and numerical integration schemes of [1] and [2] 
to a scattering parameter formulation to generate the time-domain
stamp for multiconductor frequency-dependent lines. Scattering
parameters offer the unique advantage of the flexibility in the
choice of a reference system. This flexibility can be exploited to
minimize the approximation effort thus optimizing the accuracy of
the results. In this work, such an approach is used to formulate the
equations and generate the time-domain stamp for a lossy, fre-
quency-dependent multiconductor transmission line system.

We first present a single line analysis in which we bring out the
advantages of a scattering parameter formulation. Next, the analy-
sis is generalized to lossy, frequency-dependent multiconductor
lines. Examples and comparisons are given to evaluate the per-
formance of the method

Single-Line Scattering Parameter Formulation

The scattering parameters of a lossy transmission line of length l,

complex characteristic impedance Zo and propagation constant

satisfy the relation (see Figure 1)

B1 = S11A1 + S12A2 (1a)

B2 = S21A1 + S22A2 (1b)

where A1 and A2 are the incident voltage waves at the reference
planes measured in the reference lines of characteristic impedance
Zref. B1 and B2 are the reflected waves due to A1 and A2 respec-
tively. These scattering parameters are given by [3]
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Figure 1. Transmission-line network for scattering parameter determination.
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and X = e- l is the complex propagation function of the line. This
expression contains propagation and attenuation components. The
complex propagation constant  is given by

R j L G j C  (4)

and the complex characteristic impedance of the line is:
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where R, L, G and C are the resistance, inductance, conductance

and capacitance per unit length respectively. In general they are

functions of frequency. The choice of the reference impedance is 

arbitrary; however, if we choose 

ref
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C
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we observe that the scattering parameters of the line are "opti-

mized"; in particular, for high frequency, since 
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we observe that 

S11 0  and j LCl

12 oS e X  (9)

where Xo is the asymptotic propagation function of the line. This
factor corresponds to a simple delay in the time domain. As a first
step in our formulation, S11 is split into two terms to give

(a) (b)
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such that the split terms are given by:
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and S12 is still given by:
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Analogously, we multiply S12 by  and defineXoXo
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The two-port network formulation now becomes 
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translate to simple shift in the time
domain, the inversion process must thus focus on the approxima-
tion of the terms ,  and . Little analytical effort shows 
that if the reference impedance is chosen as per (6), then, in the
asymptotic high-frequency limit, we get,
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11Ŝ 0 12Ŝ 1

These asymptotic quantities represent the nominal values about
which the augmented scattering parameters will fluctuate as a func-
tion of frequency. In most practical applications, these functions
are weak and monotonous; this thus provides the basis for an accu-
rate approximation over a wide frequency range. The functions are
approximated as rational functions as per [1]. The approximation is
performed by using an interpolation scheme to approximate the
real parts of the scattering parameters.  Results for these approxi-
mations are shown in Figures 2 for the augmented scattering pa-
rameters for a lossy line with skin effect.

N-Line Scattering Parameter Formulation

Given the R, L, G and C matrices of a lossy n-line system, the fre-

quency-domain solution leads to the introduction of the complex 

propagation function matrix X(u) given by
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for any real scalar u. The complex propagation constant, i +j i, is
associated with the ith mode and is the ith entry of the diagonal
eigenvalues matrix m. Modal and line impedance matrices can
also be defined as Zm and Zc [4]. They are given by:
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Figure 2. Plots of S11(a), S11(b) and S12 for exact and approximated values 
versus normalized electrical length (length/  ). The line characteristics are
Ls=418 nH/m, Cs = 0..092, Rdc=200 , Rs=200 ohms(m- GHz1/2)
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m mZ  = E Z H  (18)

-1 -1 -1

c m mZ = E Z H = E E Z . (19)

E and H are the complex voltage and current eigenvector matrices 
respectively. Once the important propagation parameters of the
coupled lossy line system are determined, we can derive the scat-
tering-parameter representation of such a system. The derivation of
the scattering parameter matrices is detailed in [4]. The procedure
consists of defining a lossless, ideal array of coupled transmission
lines with inductance and capacitance matrices give by Lo and Co

respectively.  Such a system has voltage and current transformation
matrices given by Eo and Ho respectively. The eigenvalue matrix of
the system is o and its modal impedance matrix is Zo.  From its
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eigenvalue matrix, a diagonal propagation function matrix Xo(u)
can be derived and is given by
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for any real scalar u; voi is the propagation velocity mode associ-
ated with the ith mode. It can be shown that oi = /voi where oi
is the eigenvalue associated with the ith mode. In order to derive
the scattering parameters of the coupled lossy line system, two 
identical arrays of the ideal multiconductor system are connected to
either side of the lossy array to be analyzed as shown in Figure 3, a 
network can be constructed such that all modes are matched upon
incidence, which insures no reflections from the source side of the 
arrays.  These matching networks have a conductance matrix, YT,
given by

YT = Lo
-1Eo

-1
oEo (21)
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Figure 3. Array of coupled lossy transmission for scattering parameter
analysis.

in which [YT]ij is the conductance between the ith and jth lines and
[YT]ii is the conductance between ith line and ground at the port
being considered. Modal coefficient vectors A1, B1, A2, and B2 are
defined at the transition planes; A1 and B1 are the incident and
reflected modal wave vectors to the lossy array from Port 1, and A2
and B2 are the incident and reflected modal wave vectors from Port
2. Next, a set of relations is sought between the incident modal
wave vectors from one port and the reflected modal wave vectors
at either port. From this, a frequency domain modal scattering pa-
rameter array can be defined to describe a 2n by 2n matrix. Such an
array satisfies the relation

B1 = S11 A1 + S12 A2 (22a)

B2 = S21 A1 + S22 A2 . (22b)

In the case of a lossy multiconductor system, the scattering pa-

rameter formulation is performed in the modal space [4]. The mo-

dal scattering parameter matrices are given by
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in which 
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where 1n is the unit matrix of dimension n and l is the length of 
each line in the test array.

The associated augmented modal scattering parameters matrices
are given by

1(a) 1

11Ŝ T 1 T  (26a)

1(b) 1 1 1

11 o oŜ T 1 T  (26b)

11

12 o oŜ E E 1 1 T 1  (26c)

where o = Xo(l) is associated with the lossless reference system.
The augmented scattering parameter matrices can be approximated
using the same method as in the single-line case. The inversion into
the time domain is then performed  from the matrix equivalent of 
equations (16) using recursive convolution.

Applications

The accuracy and efficiency of the method were tested through
testing an array of lossy lines. The configuration is shown in Figure
4 and consists of 5 coupled lines with 4 drive lines and one sense
line. The line characteristics are shown in Table I. In particular, the
resistance per unit length was chosen to take the form:

Drive Line 2

Sense Line

Drive Line 3

Drive Line 4

Drive Line 1

Figure 4. Coupled line structure with resistive terminations. The pulse 
characteristics are: width=20 ns, rise and fall times=1 ns, magnitude=1V.
Near end terminations: Zs=50 ; far end terminations: ZL=1k  The length 
of the lines is l=14 in.

Table I. Coupled-line characteristics

L

(nH/m)

C

(pF/m)

G

(mhos/m)

R

( /m, /m-GHzp)

Self 418 96 0.0 Rdc=150, Rskin=100,p=0.5

Mutual 150 22 0.0 0.0

Non-adjacent 25 0.6 0.0 0.0

p

s skinR (f) = R f (27)

where Rs is the self resistance per unit length in ohms per meter, f
is the frequency in GHz, Rskin is the skin effect resistance factor
and p is an exponent. Results are shown in Figure 5. For the chosen
parameters, sufficient agreement was observed between the two 
methods. Future work will involve the study of strong variations of
the skin effect resistance as well as the inclusion of conductance
terms.

Conclusions

An efficient and accurate method for simulating transmission lines
is presented. The method uses a scattering parameter formulation. 
The s-parameters are  augmented and approximated in the fre-
quency domain before a recursive convolution is used to yield the
time-domain transients. Comparison with previous methods con-
firm the accuracy and robustness  of the method. 
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Figure 5. Simulation results for circuit in Figure 4 using both standard and
scattering parameter approach. Top: drive lines waveforms at near end,
Bottom: sense line waveforms at near end. 
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