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1. Introduction 
 
 Higher data rate wireless transmission systems are needed to meet the needs for high-speed 
wireless transmission of high definition videos and large files. In wireless communications, the 
multiple-input multiple-output (MIMO) transmission technique [1] has been gathering attention 
because it can increase the wireless transmission rate without expanding the frequency bandwidth 
through the use of multiple antennas at the transmitter and receiver. The MIMO technique has 
found practical consumer use in high-speed wireless LAN systems [2].  
 In our research, we have focused on the short range MIMO (SR-MIMO) transmission that 
performs MIMO transmission by utilizing the length differences in the propagation channels 
between facing transmitting (Tx) and receiving (Rx) array antenna elements in short range wireless 
communications [3] [4]. As an application of SR-MIMO transmission, we have proposed a wall 
transmissive wireless repeater (shown in Fig. 1(a)) that is installed on both sides of a wall [5]. The 
repeater, even in buildings where the laying construction of optical fibers is prohibited, enables high 
speed data transmission to be performed between rooms and broadband networks to be brought 
indoors through wireless links. Also, in case of using millimeter wave band, the non-contact high 
speed data transfer application shown in Fig. 1(b) can be expected because the array antenna 
becomes small size [6].  
 As mentioned above, SR-MIMO is characterized by utilizing the length differences in 
propagation channels to perform signal separation. We have already clarified the existence of 
optimum element spacing, which maximizes the channel capacity for a given distance between 
transceivers [3]. For example, when there is a 90-degree phase difference between each propagation 
channel between transceiver antenna elements, 2×2 SR-MIMO transmission achieves maximum 
channel capacity. However, in actual usage cases it is likely difficult to perform SR-MIMO 
transmission over optimum distances using an array antenna designed with a certain element 
spacing. To address the issue in this paper, we propose a phase difference control technique that 
adjusts the phase difference between each propagation channel to 90 degrees. This maximizes 
channel capacity by controlling the transmission (or received) power ratio of sub-array antenna. We 
also show the proposed method's effectiveness by simulation and experimental evaluation.  
 The rest of the paper is organized as follows: in section 2, we review SR-MIMO 
transmission principles and problems; in section 3, we describe our proposed phase difference 
control technique between each propagation channel by controlling the transmission (or received) 
 

 
 

Fig. 1: Application of SR-MIMO transmission technique 
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Fig. 7: Variable range of ph
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