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Abstract

The multistage Wiener filter(MWF) is a reduced rank al-
gorithm for the space-time adaptive processing(STAP). In
environments with low sample support, the performance of
the MWF is better than the full rank Wiener filter, but MWF
stage analysis has to be operated at the optimum rank. When
it is not operated at the optimum rank, it leads performance
degradation. In this paper we introduce a new rank selection
algorithm with a cross-correlation coefficient that can stop
at the optimum rank. Since the proposed algorithm does not
have to calculate the evaluation function to use a scalar
coefficient of weight derivation process, the computational
complexity is more advantageous than other algorithm. Here,
we evaluate its performance by simulation examples, and show
the effectiveness.

1. INTRODUCTION

This paper discusses a result to evaluate performance of rank
selection algorithm with a cross-correlation coefficient for the
multistage Wiener filter(MWF). The MWF, described in [1],
is an adaptive processing technique to use at low sample sup-
port environments. MWF weight calculation connects scalar
Wiener filters to multistage. Stopping at the optimum stage,
the MWF can significantly outperform the full rank Wiener
filter.

There are two types of method to stop MWF weight
calculation. One method applies diagonal loading[2] to reduce
influence of a highly stage, and the calculation is run out to
full stage. This method should be calculate to a fullN stages,
where N is the number of degrees-of-freedom(DOF), and
much computational complexity is necessary. To stop MWF
weight calculation at the optimum rank is the another method.
It should calculate only ar(< N) stages for rank reduction
method and can reduce computational complexity. Therefore
we consider that a later method is very effective for MWF
weight calculation.

As a method to judge the optimum rank to be it, the
most common rank revealing decomposition is the eigen-
value decomposition(EVD). The EVD well uses the Akaike
information criterion(AIC)[3] and the minimum description
length(MDL)[4] for rank selection algorithm. As for the
rest, a well known method is called the white noise gain
constraint(WNGC)[5]. It has been observed that the size of
the weight vector norm, grows in response to mismatch errors.
Therefore thresholding‖w‖2 can be used as a rank selection
algorithm. For other approaches, the method of conjugate
gradients can be used to implement the MWF[5]. This is the
hybrid method that uses sample mean square error(SMSE) and
the Krylov power functionPr(0). Thus these rank selection
algorithms are according to require auxiliary knowledge, a
calculation of an evaluation function and a judgment by the
threshold.

The MWF provides a stage-by-stage decomposition of the
Wiener filter solution. At each stage a scalar weight is com-
puted for the MWF which weights the contribution of that
stage in removing undesired signal from the desired signal.
The first stage of the MWF is responsible for removing
interference most correlated with the residual undesired signal
that survived all previous stages. Each successive stage acts
upon a smaller residual undesired signal quantity. Hence the
calculation of additional stages becomes counterproductive
after reached the optimum stage. It solves this problem and
makes use of a characteristic of a weight calculation of the
MWF, we propose rank selection algorithm with a cross-
correlation coefficient of weight derivation process. The pro-
posed algorithm does not have to calculate the evaluation
function, the computational complexity is more advantageous
than other algorithm. In using proposed algorithm for MWF
rank selection, MWF recursion solution can be stopped auto-
matically at the optimum stage. And we show that it is good
performance than the WNGC by simulation examples.

In this paper, we introduce the space-time signal models and
the MWF algorithm in Section 2, Secondly, we describe the
proposed rank selection algorithm in Section 3, and present

1



a simulation example in Section 4. Lastly, we concluded our
result in Section 5.

2. BACKGROUND

A. Space-Time Signal Models

The spatial and temporal steering vectorssθ̄, sf̄d
are defined

as follows

sθ̄ = [1, ejθ̄, . . . , ej(N−1)θ̄]T , (1)

sf̄d
= [1, ejf̄d , . . . , ej(M−1)f̄d ]T , (2)

whereT is transpose,N is the number of elements,M is the
number of pulses,̄θ is the normalized spatial angle,̄fd is the
normalized doppler frequency. In addition the azimuth angle
of the signalθ and the doppler frequencyfd are defined as
follows

θ̄ =
2πd

λ
sinθ, (3)

f̄d = 2π
fd

fp
, (4)

where λ is the radar wavelength,d is the element spacing,
fp is the pulse repetition frequency(PRF). We combine the
spatial and temporal steering vectors into theN × M space-
time steering vectorsθ̄,f̄d

for STAP as follows

sθ̄,f̄d
= sf̄d

⊗ sθ̄, (5)

where⊗ is the Kronecker product.
Clutter is modeled as a zero-mean Gaussian random process.

The space-time clutter covariance matrixRc is given by

Rc =
Nc∑
i=1

σ2
c (i)[vf̄i

vH
f̄i

] ⊗ [vθ̄i
vH

θ̄i
], (6)

whereH is conjugate transpose,Nc is the number of clutter
patches uniformly distributed in azimuth,σ2(i) is the power
of in the ith clutter patch,vθ̄i

and vf̄i
are the spatial and

temporal steering vectors associated with theith clutter patch.
The space-time clutter ridge for different velocity/PRF con-

ditions β can be given by

β =
2vp

d · fp
, (7)

wherevp is the platform velocity.
Here, in the case of a side-looking uniform linear ar-

ray(ULA) with half-wavelength element spacing andβ is an
integer, the clutter covariance matrix rank holds the “Brennan’s
rule[6], [7]”;

rank{Rc} � �N + β × (M − 1)�, (8)

where �·� is the ceiling operator(round to nearest largest
integer).

Jammer is uncorrelated pulse-to-pulse, therefore jammer
covariance matrixRj can be given by

Rj = σ2
j

[
IM ⊗ [vθj vH

θj
]
]
, (9)

whereσ2
j is the jammer power,IM is the M × M identity

matrix, vθj is the jth jammer spatial steering vector.
Noise refers to receiver thermal noise and is modeled as a

zero-mean Gaussian random process. It is uncorrelated both
spatially and temporally, therefore it can be characterized by
the following covariance matrixRn.

Rn = σ2
n

[
IM ⊗ IN

]
, (10)

whereσ2
n is the noise power,IN is theN×N identity matrix.

The undesired signals(clutter, jammer and noise) for STAP
are all assumed to be uncorrelated. Therefore, the total
interference-plus-noise covariance matrixR can be as the sum
of the individual covariance matrices

R = Rc +
J∑

i=1

Rj(i) + Rn, (11)

whereJ is the number of jammers.
The standard method of estimating the covariance matrix is

by constructing the sample covariance matrixR as follows

xi(k) = R
1
2

1√
2

ak, (12)

R =
1
K

K∑
k=1

xi(k)xi(k)H , (13)

where xi(k) is the kth training sample at theith element,
K is the total number of training samples and theN × M
matrix ak are generated from a complex vector, zero mean,
unit variance, Gaussian distribution.

For example, a well known algorithm, the maximum signal-
to-noise ratio(MSN)[8] algorithm gives the weight vector
wmsn as follows

wmsn =
R−1s

sHR−1s
, (14)

wheres is the steering vector.

B. The Multistage Wiener Filter

The MWF is a signal dependent reduced rank processing, it
be able to operate at fewer adaptive DOF than other reduced
rank algorithms(e.g., principal components, the cross spectral
metric)[1]. The filter structure of the MWF is shown in Fig.
1, and the recursion equations are summarized in TABLE
1, whereE [·] denotes ensemble average,rxidi is the cross-
correlation vectors,di(k) is the desired signals,δi is the
magnitude of cross-correlation vectors,hi is the direction of
cross-correlation vectors,Bi is the blocking matrices,null(·)
meansBihi = 0, wi is the scalar weights, andεi(k) is the
error signals.

Now the adaptive weight vectorwmwf for the MWF
solution can be represented as follows

wmwf = s − w1BH
0 h1 + w1w2BH

0 BH
1 h2

− w1w2w3BH
0 BH

1 BH
2 h3 + · · · , (15)

whereB0 is thenull(s).
As I mentioned previously, rank reduction is obtained by

truncation at the arbitraryr(< N) stages.
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Fig. 1: The Filter Structure of the MWF for 3 Stages.

TABLE 1: RECURSIONEQUATIONS FOR THEMWF.

Forward Recursion Backward Recursion
rxidi = E [xi(k)d∗

i (k)] ξN = E
ˆ| xN−1(k) |2˜

δi+1 =
q

rH
xidi

rxidi δN (k) = rxN−1dN−1

hi+1 = rxidi/δi+1 ξi = σ2
di

− δ2
i+1/ξi+1

Bi+1 = null(hi+1) = E
ˆ| εi |2

˜
di+1(k) = hH

i+1xi(k) wi = δi/ξi

σ2
di

= E
ˆ| di(k) |2˜

εi(k) = di(k) − wi+1εi+1(k)
xi+1(k) = Bi+1xi(k)
xN−1(k) = dN (k) = εN (k)

3. PROPOSED RANK SELECTION ALGORITHM

In MWF solution, a scalar coefficientξi and a scalar weightwi

of a weight derivation process have a very important meaning.
Recall from TABLE 1 that scalar coefficientsξi and a scalar
weight wi are defined as follows

ξi = σ2
di

− δ2
i+1/ξi+1 = E

[| εi |2
]
, (16)

wi = δi/ξi, (17)

where (16) shows a scalar coefficientξi is the expected value
of the magnitude squared error at theith stage.

Because MWF stage analysis is calculated to remove unde-
sired signal from the desired signal at each stage, a value ofξi

which shows the magnitude of the squared error is almost zero
value when reached the optimum rank. In addition, a value
of coefficientwi becomes bigger when a value of coefficient
ξi becomes almost zero as shown in (17). Therefore, if each
coefficient is able to judge by optimum threshold, scalar coeffi-
cientsξi andwi can be used as rank selection criteria, however
it is necessary to determine the threshold by simulation same
as other algorithms.

Now we introduce a scalar coefficientηi which multiplied
ξi by wi as follows

ηi = ξi · wi,

= δi, (18)

whereηi is equal to the magnitude of cross-correlation vectors
δi as shown in (17).

Recall from TABLE 1 that the direction of cross-correlation
vectorshi, the cross-correlation vectorsrxidi , and the desired

ith  Stage Forward Recursion

Weight Calculation for ( i  -1) stages

No

Yes

Start

Stop

Next Stage

ith  Stage Backward Recursion

i

Coefficient  η  <  1

Fig. 2: The Flow Chart of Proposed Rank Selection Algorithm.

signalsδi are defined as follows

hi+1 = rxidi/δi+1, (19)

rxidi = E [xi(k)d∗
i (k)] , (20)

di+1(k) = hH
i+1xi(k). (21)

By (19), the magnitude of cross-correlation vectorδi is repre-
sented as follows

δi = hH
i rxi−1di−1 . (22)

Substituting (20) and (21) into (22) leads to

δi = E
[
hH

i xi−1(k)d∗
i−1(k)

]
,

= E
[
di(k)d∗

i−1(k)
]
, (23)

where we see thatδi is the cross-correlation coefficient ofith

and (i − 1)th stage desired signals.
Because a cross-correlation coefficient is a statistical rela-

tionship between two data, it is thought that there is similarity
for two data when it is almost 1. And so the magnitude
of cross-correlation vectorsδi denotes the cross-correlation
coefficient of the desired signals betweenith and (i − 1)th

stage, the value ofηi(= δi) becomes smaller than 1 when
MWF recursion reached the optimum rank. Therefore, MWF
weight solution should stop at the(i− 1)th stage whenηi(the
value of ith stage) is less than 1.

So we propose a condition of rank selection as follows

ηi = δi ≤ 1. (24)

In addition, because a cross-correlation coefficientηi(= δi) is
calculated by MWF forward recursion(see, TABLE 1), there
is no computational complexity for proposed rank selection
algorithm and be able to stop automatically at the optimum
rank when (24) satisfied a condition. Here, the flow chart of
proposed rank selection algorithm shows in Fig. 2.
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4. SIMULATION EXAMPLE

In this section, we evaluate proposed rank selection algorithm
by simulation examples. We determine the magnitude of eigen-
value andηi under the condition thatN = 8 elements ULA
with half-wavelength element spacing,M = 8 pulses coherent
processing interval, the training dataK = 64 samples, noise
floor is 0dB, clutter-to-noise ratio(CNR) is 30dB on each
element and each pulse, and conditions of clutter aliasing
β = 0.5, 1.0, 1.5 and2.0.

From Fig. 3, it is clear that we can estimate the clutter
covariance matrix rank is 16, 15, 23 and 22 because the
magnitude of17th, 16th, 23th and22th eigenvalue are smaller
than the previous stages(those are near to noise level). Fig. 4
shows the magnitude ofηi tends to be similar to the magnitude
of eigenvalue. As in the case of the eigenvalue, we can estimate
the clutter covariance matrix rank is 16, 15, 23 and 22 by the
proposed algorithm.

Next, we run 1000 Monte Carlo trials for eachβ changed
from 0.1 to 2.0 every 0.1 steps, and the other simulation
parameters are unchanged as the previous one. Here, we

TABLE 2: OCCURRENCE OF THEPROPOSEDMETHOD.

∆rank
β -5 -4 -3 -2 -1 0 1 2 3

0.1 0 3 258 515 224 0 0 0 0
0.2 0 0 0 0 13 987 0 0 0
0.3 0 0 3 726 255 16 0 0 0
0.4 0 0 0 0 11 989 0 0 0
0.5 0 0 0 0 6 994 0 0 0
0.6 0 0 0 616 354 30 0 0 0
0.7 0 0 0 0 1 664 335 0 0
0.8 0 0 0 0 1 999 0 0 0
0.9 0 0 0 0 5 995 0 0 0
1.0 0 0 0 0 2 998 0 0 0
1.1 0 0 0 0 2 873 125 0 0
1.2 0 0 0 0 9 795 196 0 0
1.3 0 0 0 0 0 51 949 0 0
1.4 0 0 0 0 0 1000 0 0 0
1.5 0 0 0 0 33 962 5 0 0
1.6 0 0 0 0 0 235 765 0 0
1.7 0 0 0 0 0 1000 0 0 0
1.8 0 0 0 0 288 712 0 0 0
1.9 0 0 0 122 814 64 0 0 0
2.0 0 0 0 0 0 1000 0 0 0

evaluate the following performance parameters.

∆rank = rank{best} − rank{prop.}, (25)

normalized SINR =
wH

mvdrRwmvdr

wH
mwf Rwmwf

, (26)

whererank{best} is the rank of the best normalized signal-to-
interference-plus-noise ratio(SINR),rank{prop.} is the rank
of the proposed rank selection algorithm,wmvdr is derived by
minimizing the interference plus noise power out of the beam-
former, while retaining the desired signal without distortion.

TABLE 2 and 3 show the occurrence of the proposed
algorithm and the WNGC, where the threshold level is 1dB,
and Fig. 5 shows a histogram of them. We consider the
proposed algorithm is superior to the WNGC because the
WNGC selected therank{best} about 59% whereas the
proposed algorithm selected about 67%. Fig. 6 shows the
normalized SINR. The proposed algorithm is similar to the
performance ofrank{best}, and superior to the WNGC.

Next, Recall form TABLE 2, we see that the proposed
algorithm tends to overestimate atβ = 0.1, 0.3, 0.6, and
1.9. So we think the characteristic of normalized SINR can
be improved by applying to “error loading[9]” and “diagonal
loading[10]”. For example, we evaluate performance that
applied “error loading” to the proposed algorithm, where the
loading level is 0dB. Here, the following coefficient is used
instead of (17)

wi = δi/{ξi + σ2
el}, (27)

whereσ2
el is the loading level.

Fig. 7 shows the normalized SINR of the “with error
loading” and “without error loading”. Clearly, the performance
improves by applying error loading to proposed algorithm.
Thus good performance can be realized by the proposed
algorithm.
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TABLE 3: OCCURRENCE OF THEWNGC.

∆rank
β -5 -4 -3 -2 -1 0 1 2 3

0.1 0 0 0 738 262 0 0 0 0
0.2 0 0 0 0 355 645 0 0 0
0.3 0 0 0 107 856 37 0 0 0
0.4 0 0 0 0 1 996 3 0 0
0.5 0 0 0 0 68 932 0 0 0
0.6 0 0 0 0 882 118 0 0 0
0.7 0 0 0 0 0 157 842 1 0
0.8 0 0 0 0 0 999 1 0 0
0.9 0 0 0 0 2 998 0 0 0
1.0 0 0 0 0 116 884 0 0 0
1.1 0 0 0 0 0 601 399 0 0
1.2 0 0 0 0 0 598 402 0 0
1.3 0 0 0 0 0 197 803 0 0
1.4 0 0 0 0 1 999 0 0 0
1.5 0 0 0 0 0 981 19 0 0
1.6 0 0 0 0 0 159 841 0 0
1.7 0 0 0 0 0 1000 0 0 0
1.8 0 0 0 0 499 501 0 0 0
1.9 0 0 0 4 905 91 0 0 0
2.0 0 0 0 0 29 971 0 0 0
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Fig. 5: Histogram of∆rank.

5. CONCLUSIONS

In this paper, we proposed a rank selection algorithm with
a cross-correlation coefficientηi for the MWF. The proposed
algorithm has no computational complexity becauseηi(= δi)
is calculated by MWF forward recursion. As example, we
demonstrated characteristics of rank estimation and normal-
ized SINR. Consequently, the proposed algorithm showed that
it was good performance than the WNGC.
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