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Abstract As a method to judge the optimum rank to be it, the
most common rank revealing decomposition is the eigen-
value decomposition(EVD). The EVD well uses the Akaike
information criterion(AIC)[3] and the minimum description
length(MDL)[4] for rank selection algorithm. As for the
rest, a well known method is called the white noise gain
constraint(WNGC)[5]. It has been observed that the size of
the weight vector norm, grows in response to mismatch errors.
Therefore thresholdingw||? can be used as a rank selection
algorithm. For other approaches, the method of conjugate
gradients can be used to implement the MWF[5]. This is the
hybrid method that uses sample mean square error(SMSE) and
the Krylov power functionP,.(0). Thus these rank selection
algorithms are according to require auxiliary knowledge, a
calculation of an evaluation function and a judgment by the
threshold.
The MWF provides a stage-by-stage decomposition of the
1. INTRODUCTION Wiener filter solution. At each stage a scalar weight is com-
puted for the MWF which weights the contribution of that
This paper discusses a result to evaluate performance of rapkge in removing undesired signal from the desired signal.
selection algorithm with a cross-correlation coefficient for thghe first stage of the MWF is responsible for removing
multistage Wiener filter(MWF). The MWF, described in [1]interference most correlated with the residual undesired signal
is an adaptive processing technique to use at low sample stiat survived all previous stages. Each successive stage acts
port environments. MWF weight calculation connects scalapon a smaller residual undesired signal quantity. Hence the
Wiener filters to multistage. Stopping at the optimum stagealculation of additional stages becomes counterproductive
the MWF can significantly outperform the full rank Wienemfter reached the optimum stage. It solves this problem and
filter. makes use of a characteristic of a weight calculation of the
There are two types of method to stop MWF weightfWF, we propose rank selection algorithm with a cross-
calculation. One method applies diagonal loading[2] to reducerrelation coefficient of weight derivation process. The pro-
influence of a highly stage, and the calculation is run out fwosed algorithm does not have to calculate the evaluation
full stage. This method should be calculate to a filstages, function, the computational complexity is more advantageous
where N is the number of degrees-of-freedom(DOF), anthan other algorithm. In using proposed algorithm for MWF
much computational complexity is necessary. To stop MWank selection, MWF recursion solution can be stopped auto-
weight calculation at the optimum rank is the another methochatically at the optimum stage. And we show that it is good
It should calculate only a(< N) stages for rank reduction performance than the WNGC by simulation examples.
method and can reduce computational complexity. Thereforeln this paper, we introduce the space-time signal models and
we consider that a later method is very effective for MWEhe MWF algorithm in Section 2, Secondly, we describe the
weight calculation. proposed rank selection algorithm in Section 3, and present

The multistage Wiener filter(MWF) is a reduced rank al-
gorithm for the space-time adaptive processing(STAP). In
environments with low sample support, the performance of
the MWF is better than the full rank Wiener filter, but MWF
stage analysis has to be operated at the optimum rank. When
it is not operated at the optimum rank, it leads performance
degradation. In this paper we introduce a new rank selection
algorithm with a cross-correlation coefficient that can stop
at the optimum rank. Since the proposed algorithm does not
have to calculate the evaluation function to use a scalar
coefficient of weight derivation process, the computational
complexity is more advantageous than other algorithm. Here,
we evaluate its performance by simulation examples, and show
the effectiveness.



a simulation example in Section 4. Lastly, we concluded owherea2 is the jammer powerl,; is the M x M identity
result in Section 5. matrix, ’l)g is the j** jammer spatial steering vector.
Noise refers to receiver thermal noise and is modeled as a

2. BACKGROUND zero-mean Gaussian random process. It is uncorrelated both

A. Space-Time Signal Models spatially and temporally, therefore it can be characterized by
The spatial and temporal steering vectes s, are defined the following covariance matris,,.
as follows R, =0Ty ®1Iy], (10)
sg=[1,e, ... dWN-DIT (1) whereo? is the noise powed y is the N x N identity matrix.
s, =1 oifa I M= a)T ?) The undesired signals(clutter, jammer and noise) for STAP
El ’ [ ’

are all assumed to be uncorrelated. Therefore, the total
where” is transpose]N is the number of elementd/ is the interference-plus-noise covariance matfxcan be as the sum
number of pulses] is the normalized spatial anglé, is the of the individual covariance matrices

normalized doppler frequency. In addition the azimuth angle J
of the signald and the doppler frequency, are defined as R=R .+ Z R;(i) + R,, (11)
follows i=1

_ 27d . whereJ is the number of jammers.

§ = ——sind, () The standard method of estimating the covariance matrix is

_ fa by constructing the sample covariance mathxas follows

fa= 27rff., 4

p (IJZ(k) = 5 ] (12)

where \ is the radar wavelength] is the element spacing, \f
fp is the pulse repetition frequency(PRF). We combine the R_ 72:8‘ o () (13)
spatial and temporal steering vectors into fkiex M space- K k ’

time steering vectos; 7, for STAP as follows
’ where x;(k) is the k" training sample at thé'" element,

85,7, = 87, ® g, (5) K is the total number of training samples and tNex M

. matrix a, are generated from a complex vector, zero mean,
where® is the Kronecker product. k 9 P
unit variance, Gaussian distribution.

Clutter is modeled as a zero-mean Gaussian random Procesy example, a well known algorithm, the maximum signal

The space-time clutter covariance matii is given by to-noise ratio(MSN)[8] algorithm gives the weight vector
" W,,sn as follows
R. ZU ® [Ué) Yy, ] (6) R—ls
Wmsn = 7 >
sHR 'g

wheres is the steering vector.

(14)

where ¥ is conjugate transpos&, is the number of clutter
patches uniformly distributed in azimuth?2(i) is the power
of in the i*" clutter patch,vs, and v, are the spatial and B- The Multistage Wiener Filter
temporal steering vectors associated with#feclutter patch. The MWF is a signal dependent reduced rank processing, it
The space-time clutter ridge for different velocity/PRF corbbe able to operate at fewer adaptive DOF than other reduced
ditions 3 can be given by rank algorithms(e.g., principal components, the cross spectral
20, metric)[1]. The filter structure of the MWF is shown in Fig.
d [, (7) 1, and the recursion equations are summarized in TABLE
p 1, whereE'[-] denotes ensemble average, ; is the cross-
wherew, is the platform velocity. correlation vectorsd;(k) is the desired signalsy; is the
Here, in the case of a side-looking uniform linear amagnitude of cross-correlation vectors; is the direction of
ray(ULA) with half-wavelength element spacing afids an cross-correlation vectord3; is the blocking matricesyuli(-)
integer, the clutter covariance matrix rank holds the “BrennaniseansB;h; = 0, w; is the scalar weights, and(k) is the
rule[6], [7]"; error signals.
Now the adaptive weight vectow,,,r for the MWF
rank{Rc} = [N+ x (M —-1)], ®)  solution can be rF:epresentgd as follows !
m?;ggr)(-] is the ceiling operator(round to nearest largest Wi = 8 — wy B hy + wyw, BY B hy

8=

HpH pH
Jammer is uncorrelated pulse-to-pulse, therefore jammer —wiwws By By By hs + -+, (15)
covariance matrixz; can be given by where By is the null(s).
9 " As | mentioned previously, rank reduction is obtained by
R; = o[y @ [vg,0,]] ) truncation at the arbitrary(< N) stages.
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Fig. 1: The Filter Structure of the MWF for 3 Stages.

L]

TABLE 1: RECURSIONEQUATIONS FOR THEMWF. |

Forward Recursion Backward Recursion
Ta,a, = B [xi(k)di (k)] Ev =E[len-1(k) ]
Oiy1 = "'idT"’zidi On(k) =Ton_1dn .
hit1 =7a,a;/0it1 & = ng - 57?451/51'-*—1 Fig. 2: The Flow Chart of Proposed Rank Selection Algorithm.
B'H»l = null(hl+1) =F [| €; ‘ ]
dis1(k) = hil @i(k) wi = 0; /&
oq, = E [ di(k) ] ei(k) = di(k) — wivi€is1(k) _ _
xit1(k) = Biyizi(k) signalsd; are defined as follows
zn-1(k) = dn(k) = en (k)
hiv1 ="7s,a,/0it1, (19)
3. PROPOSED RANK SELECTION ALGORITHM i1 (k) = hﬁ1$i(k)~ 1)

In MWF_ solutio_n, a_scalar coefficieqt and a gcalar weight; . By (19), the magnitude of cross-correlation vecipis repre-
of a weight derivation process have a very important meaning,iad as follows

Recall from TABLE 1 that scalar coefficients and a scalar

weightw, are defined as follows Si=hr,, 4 .. (22)
& =02 — 5?+1/&+1 = F U € |2] , (16) Substituting (20) and (21) into (22) leads to
wi = 0i/&, (a7 0i=FE [hfmi—l(k) :—l(k)} )

where (16) shows a scalar coefficigitis the expected value = E [di(k)d;_ (k)] , (23)

of the magnitude squared error at tié stage. ) ) L
Because MWF stage analysis is calculated to remove undf1ere we see thaj; is the cross-correlation coefficient ot

sired signal from the desired signal at each stage, a valge ofnd (i — 1) stage desired signals. o

which shows the magnitude of the squared error is almost zerd3€cause a cross-correlation coefficient is a statistical rela-

value when reached the optimum rank. In addition, a valtignship between two dgta, it is thought that there is S|m|_lar|ty

of coefficientw; becomes bigger when a value of coefficienfor two data when it is almost 1. And so the magnitude

¢ becomes almost zero as shown in (17). Therefore, if eath cr_o;s-correlatlon v_ectoré_z- denotes the cross-correlation

coefficient is able to judge by optimum threshold, scalar coeffoefficient of the desired signals betwegh and (i — 1)*"

cients¢; andw; can be used as rank selection criteria, howevef29€, the v_alue ofy;(= 4i) becqmes smaller than 1 when

it is necessary to determine the threshold by simulation safM§VF recursion reached the optimum rank. Therefore, MWF

as other algorithms. weight solution should stop at thg— 1)t" stage whem;(the
- .
Now we introduce a scalar coefficient which multiplied Value ofé"" stage) is less than 1. .
& by w; as follows So we propose a condition of rank selection as follows
g K3
n = & - wy, n=0; <1 (24)
= di, (18) In addition, because a cross-correlation coefficigli J;) is

calculated by MWF forward recursion(see, TABLE 1), there

wheren; is equal to the magnitude of cross-correlation vectois no computational complexity for proposed rank selection

6; as shown in (17). algorithm and be able to stop automatically at the optimum

Recall from TABLE 1 that the direction of cross-correlatiomank when (24) satisfied a condition. Here, the flow chart of
vectorsh;, the cross-correlation vectors,4,, and the desired proposed rank selection algorithm shows in Fig. 2.
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TABLE 2: OCCURRENCE OF THEPROPOSEDMETHOD.

10’ Arank
B 1 B 5[4 3] 2] 1] 0 [ 1 ]2]3
R AR aaes T 01] 0|3 [258]55[224] 0 [0 [0]0
10°F NES e e S : 02[{0[0[ 0 [0 [13[ 97 0 [0]0
T \ Lo 03/ 0] 0 3 726 | 255 | 16 0 0|0
g 10 ¢ b N 3 04| 0] 0 0 0 11 989 0 0|0
T ol \ : ‘ ] 05|00 0] 0| 6 | 94| 0 |[0]O
2 D‘g A 06| 0] 0 0 616 | 354 | 30 0 0|0
g 10°k | Clutter Aliasing \ ‘:\ ] 0710101 0 0 1 664 13351 010
N i N 0800 0| 0 T 99 0 0[]0
WE| apets AN 3 09[0[0[ 0 [0 |5 [95[ 0|00
1| Yok 070000 Yttt 100 [0 0O | 0 | 2 [ 998 0 |00
? 11|/ 0| O 0 0 2 873 [ 1250 | O
o1 L - - - - “ 2[00 0 | 0 | 9 | 795[196[0]0
Eicenvalue Index 13/ 0| O 0 0 0 51 9491 01| 0
¢ 141 0| 0 0 0 0 1000| O 0|0
Fig. 3: Eigenvalue Index vs. Magnitude of Eigenvalue. 15/ 0|0 0 0 33 | 962 5 0|0
16| 0| O 0 0 0 235 | 7650 | 0O
1.7/ 0| O 0 0 0 1000 | O 0|0
. 18| 0| O 0 0 288 | 712 0O |0]O
1 190 [0 0 |122[814| 64 | 0 (0|0
10 ;;B ] 20 0] O 0 0 0 1000 0 O] O
028
10° L V\’@tﬁ\@(&@%% Ry By 3
- )
g ol 5 N ] evaluate the following performance parameters.
% Wl \ A ] Arank = rank{best} — rank{prop.},  (25)
"é Clutter Aliasing - 1 \ 'wH Rw
g 10°p | O P05 . 3 normalized SINR = mH“dTimvdr, (26)
| arps ] Wi, (R
e b Ay whererank{best} is the rank of the best normalized signal-to-
1 5~~B>o—cx6»0q5.‘$g@%§‘g§v§:&$ interference-plus-noise ratig(SINR)apk{prop.}_» is the rank
01! w - : = . - of the proposed rank selection algorithm,, 4, is derived by
5 5 5

minimizing the interference plus noise power out of the beam-
former, while retaining the desired signal without distortion.
Fig. 4: Number of Stages vs. Magnitude gf. TABLE 2 and 3 show the occurrence of the proposed
algorithm and the WNGC, where the threshold level is 1dB,
and Fig. 5 shows a histogram of them. We consider the
4. SIMULATION EXAMPLE proposed algorithm is superior to the WNGC because the
WNGC selected therank{best} about 59% whereas the
In this section, we evaluate proposed rank selection algorittjroposed algorithm selected about 67%. Fig. 6 shows the
by simulation examples. We determine the magnitude of eigéfbormalized SINR. The proposed algorithm is similar to the
value andy; under the condition thalV' = 8 elements ULA performance ofank{best}, and superior to the WNGC.
with half-wavelength element spaciny, = 8 pulses coherent  Next, Recall form TABLE 2, we see that the proposed
processing interval, the training dafé = 64 samples, noise algorithm tends to overestimate gt = 0.1, 0.3, 0.6, and
floor is 0dB, clutter-to-noise ratio(CNR) is 30dB on each.9. So we think the characteristic of normalized SINR can
element and each pulse, and conditions of clutter aliasipg improved by applying to “error loading[9]” and “diagonal
f#=0.5, 1.0, 1.5 and 2.0. loading[10]". For example, we evaluate performance that
From Fig. 3, it is clear that we can estimate the clutteipplied “error loading” to the proposed algorithm, where the
covariance matrix rank is 16, 15, 23 and 22 because thading level is 0dB. Here, the following coefficient is used
magnitude ofl7*", 16", 23*" and22'" eigenvalue are smaller instead of (17)
than the previous stages(those are near to noise level). Fig. 4 5
shows the magnitude af tends to be similar to the magnitude wi = 0i/{& + o},
of eigenvalue. As in the case of the eigenvalue, we can estimateeres?, is the loading level.
the clutter covariance matrix rank is 16, 15, 23 and 22 by theFig. 7 shows the normalized SINR of the “with error
proposed algorithm. loading” and “without error loading”. Clearly, the performance
Next, we run 1000 Monte Carlo trials for eaghchanged improves by applying error loading to proposed algorithm.
from 0.1 to 2.0 every 0.1 steps, and the other simulatidrhus good performance can be realized by the proposed
parameters are unchanged as the previous one. Here, algorithm.

Number of Stages

(27)
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TABLE 3: OCCURRENCE OF THENNGC.

Arank
B [-5]4]3[2]-1] 0 T 17273
01 O] O] O] 738] 262 0 0 0[]0
02/ 0[]0 O 0 | 355 645 0 0[]0
03| 0| 0| 0| 107|856 37 0 0|0
04[] 0[O0 O 0 1 996 3 0[O0
05/ 0[O0 O 0 68 | 932 0 0[]0
06/ 0[O0 O 0 | 882 118 0 0[O0
07/ 0[O0 O 0 0 157 | 8421110
080|070 0 0 999 1 0|0
09/ 0[O0 O 0 2 998 0 0[O0
10/ 0] 07O 0 116 | 884 0 0[]0
1110 0] O 0 0 601 [ 399 0|0
12| 0] 07O 0 0 508 [ 402 0| 0
13| 0] 0O 0 0 197 | 80300
14| 0[] 0] O 0 1 999 0 0|0
150070 0 0 981 [ 19 [0 | O
16/ 0] 0O 0 0 159 [ 84100
1.7/ 0] 07O 0 0 1000 O 0[O0
18| 0] 0] O 0 | 499 501 0 0[O0
19/ 0] 0] O 4 | 905| 91 0 0[O0
20/ 0| 0] O 0 29 | 971 0 0[O0
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Fig. 5: Histogram of Arank.

5. CONCLUSIONS
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