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ABSTRACT: The performance of a circular array of coaxially-fed monopole ele-
ments radiating into an infinite parallel plate region is analyzed. An outline
of analysis for the phase-sequence input admittance, element pattern and cou-
pling coefficients is presented. The characteristic features of the patterns
are described and their dependence on array and element geometry is discussed.

INTRODUCTION: Circular ring arrays of coaxially-fed monopole elements between
two circular parallel plates with E-plane (radial) flare are appealing for
applications requiring scanning of a uniform beam 360 degrees in azimuth. The
coaxial monopole element is an attractive choice for an array radiator due to
its simplicity, high power, low cost, commercial availability and reasonably
wide bandwidth. For high antenna performance, an accurate knowledge of the
radiation properties of the element in the array environment is essential.

In this paper, a circular-ring array of uniformly spaced coaxial monopoles
placed around conducting cylinder in an infinite parallel plate region is
investigated to establish the array element admittance and pattern character-
istics. We outline the steps in the analysis for the phase-sequence active
admittance, the far-field in a parallel plate waveguide due to a singly excited
coaxially-fed monopole element in a circular array environment, and the coupling
coefficients. The phase-sequence admittances and the coupling coefficients
provide information for the element design, while the element pattern is needed
to predict radiation field of the array.

The analysis takes into account the geometry of the feed system. The probe
current is assumed to have only an axial component and no angular variation.
This approximation is justified since the probe radius is small compared to the
wavelength. Furthermore, the analysis assumes that the field distribution in
the coaxial aperture is that of the TEM mode in the coaxial feed-line which is
consistent with the angularly uniform probe current density.

THE ARRAY MODEL: Fiqures 1 and 2 show the model under consideration. The top
plate of the infinite parallel plate wavegquide is partially removed to display
the section of the array. The circular-ring array of coaxially-fed monopoles

of length 2 is in a parallel plate waveguide of height h (only the TEM mode
propagates since h < A/2). The ring, of radius B, contain N equispaced iden-
tical monopoles each located coaxially a distance s above a perfectly conducting
circular cylindrical surface of radius A. The probe radius is a << A while

the inner and outer radii of the coaxial lines are a and b, respectively.

OUTLINE OF ANALYSIS: The procedure for the determination of phase-~sequence
input admittance Y(v) is based on [1]. All elements are initially excited
with aperture voltages of equal amplitude V, and progressive phase according to
exp{-j2mup/N) where v =0,1,...,N-1 is the angular wave number and p =0,1,«..,
N-1 is the element serial number. The p=0 element is designated as the refer-
ence element.
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To evaluate Y(v), an integral equation is formulated for the unknown probe
current via the requirement that the total axial electric field E,{(r;v) vanishes
on the probe surface. The E,(r;u) is produced by all the vu-th phase-sequence
probe currents as well as by the known equivalent magnetic ring distributions
in the coaxial apertures. The procedure is carried out in a number of steps:

1. E,(r:v) is regarded as a superposition of two contributions, i.e.,

E,(x:v) = EIC(r;u) + ES(ziv) (1)

where the particular solution E is due to the ring array of the exact, but
yet unknown phase-sequence probe currents and the surrounding, known phase-
sequence magnetic ring sources in an infinitely extended parallel plate wave-
guide in the absence of conducting cylinder (A + 0). The Eg is a homogeneous
(source free) solution in a unit cell such that

~inc
z

E,(A,$,2z;u) = 0. (2)

2. Expressions are obtained for Ezo(g,z), due to an isolated (single)
reference probe current and a concentric magnetic ring source in an infinite
parallel plate waveguide. .

3. Now, refering to Fig. 3 for an observation point P(p<B,¢,z), E;nc(g;u)
is obtained as a superposition of the N individual probe currents and the asso-
ciated concentric magnetic ring source contributions centered at p..

4. Using the Addition Theorem for Hankel functions, Ezlnc(£7u) is expanded
in terms of the Floquet modes in a radial unit cell.

5. The homogeneous solution Eg(g;u) is formed in terms of Floguet modes
in the radial unit cell where expansion coefficients are detremined via (2) and
step 4. -

6. For an observation point P(a,¢,z) on the reference probe p=0, as indi-
cated in (1), E,(x0) is obtained as a superposition of N isolated (single)
probe-aperture combination E;nc' centered at gp (p=0,1,¢+¢,N-1), and the homo-
geneous solution Eg given in step 5. .

7. To apply Ez(£7u)=° on the probe surface, E;nc due to p » 1 and EZ are
re-expanded about a c¢ylindrical axis centered at the reference element. 1In
view of the rotationaly symmetric reference probe current distribution, only
terms with no angular variation need be considered.

8. Steps 1 to 7 yield the desired integral equation for probe current.
Application of Galerkin's procedure yields a set of linear inhomogeneous equa-
tions for the determination of the unknown probe expansion coefficients.

10. Having solved for the probe current, then following the procedure
indicated in steps 1 to 6 the magnetic field in the aperture H$(6,z=0+) is
determined, where a < 8 < b.

11. Continuity of H} is imposed across the aperture which yields the
expression for the u-th phase-sequence input admittance. The relation for
Y(u) will be given at the presegtation.

12. The far-zone field Eze due to a singly excited element in an array
environment is
-1
z Ez(grv) (3)

;N
N y=0

(e) -
E,®'(p) =

where E,(p;v) is the total far-field of the active array (for all elements
excited with phase progression exp(-j2wup/N)) at an observation point p =
XoX + Yo¥. Ej(p;u) can be determined following procedure indicated in_steps
1 to 6 in previous section where now p > B.
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13. Coupling coefficients between reference p=0 and p-th elements are
determined via 2
1 N-1 -j--vp
SOP = gP =~ I T(z=0"ju)e N , (p=0,1,00s,N-1), (4)
N u=0
The phase sequence reflection coefficients at the aperture plane are given in
terms of Y(u) and characteristic admittance of the coaxial feed line.

NUMERICAL RESULTS AND DISCUSSION: Based on the above analysis, a computer pro-
gram was generated for evalution of the phase-sequence active input admittances,
the phase-sequence active reflection coefficients, the element patterns and of
the coupling coefficients. In order to maximize the broadside element gain, a
matching network appropriate to in-phase excitation of all monopoles was employ-
ed throughout. Element field patterns were normalized to the unit cell gain
(21a/x)1/2 and ten probe current terms were used in Galerkin's procedure.
Several numerical results for element patterns and coupling coefficients are
presented below for the following element geometry: a = 0,01 A, b = 0.034 A,

2 = 0.25 A+ The separation between the two parallel plates h = 0.37 X and the
distance from the element to the cylindrical ground s = 0.25 A.

Fige 4 illustrates the dependence of the element field pattern on the
inter-element spacing d/A. Comparison with the equivalent infinite linear
array is also given[zl (for d = 0.6 A). It is observed that all patterns
exhibit a substantial drop-off near ¢ = arc sin(A/d - 1). 1In the linear
array case this drop-off is caused by an end-fire grating lobe condition and in
the cylindrical array by its gquasi-linear counterpart as discussed in [3] for
the case of a cylindrical array of axial strip-dipoles. The curves of Fig. 4
also exhibit a ripple in the broadside region, whose amplitude diminishes with
closer element spacings and becomes negligible for 4/A =0.5. The ripple is
due to the interference of the direct single element radiation (with planar
element pattern) with the grating lobes of corresponding quasi-linear subarrays
excited by the guided creeping wave as discussed in [3].

Fig. 5 illustrates the pattern dependence on the array radius. It is seen
that in the shadow region the pattern falls off exponentially which indicates
that it is primarily due to a single creeping wave. The ripple in the ¢ = 180°
region, similarly to that found in the case of conducting cylinder, is a result
of the interference of two creeping waves traveling in opposite directions
around the cylinder.

Coupling coefficients for the circular and its equivalent infinite linear
array are presented in Fig. 6. As expected, in the circular array the coupling
coefficients initially follow that of linear array. For elements far from the
excited one (p=0), the couplig coefficients decrease exponentially which again
indicates that the main contribution is primarily due to the creeping wave.
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Fig. 6 Coupling coefficients
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