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Abstract—A methodology for detecting, identifying,
and defining nonconvulsive seizures in individuals with
acute brain injury is introduced. Specifically, beginning
with an EEG signal, the power spectrum is estimated yield-
ing a multivariate time series which is then analyzed using
empirical orthogonal functional analysis. This methodol-
ogy allows for identification and observation of seizures
that are otherwise only identifiable though expert analysis
of the raw EEG.

1. Introduction

Seizure detection in EEG data has a long history [8, 2, 6].
In fact, seizure detection has developed such that many
clinically deployed EEG recording devices have propri-
etary seizure detection algorithms included. Nevertheless,
automated seizure detection is not particularly effective.
Moreover, most seizure detection is carried out in the con-
text of epilepsy. Here we develop a methodology for iden-
tifying, detecting, and typify seizure in a different context,
nonconvulsive seizures (NCSz) in comatose patients with
a aneurysmal subarachnoid hemorrhage (SAH). The con-
text is special for two reasons. First, SAH is a debilitating
condition that affects a broad population. Second seizures
in individuals with SAH are not well understood, may be
diverse in type, and may affect recovery in different ways.
Because of the potential diversity in seizure in SAH pa-
tients, we aim to both detect seizure events and discover
and define different seizure types. Broadly, our methodol-
ogy is based applying sequential targeted levels of analysis
to raw data. More specifically, we estimate a power spec-
trum from EEG data on a moving window and then apply-
ing empirical orthogonal functional analysis (EOF) to the
power spectrum (PS).

2. Seizures in individuals with SAH

Aneurysmal subarachnoid hemorrhage (SAH) occurs
when blood enters the subarachnoid space, located between
the arachnoid membrane and the pia mater surrounding the
brain, from a ruptured dilated cerebral blood vessel. SAH

affects up to 30,000 Americans annually carrying a huge
public health burden. Secondary complications such as
nonconvulsive seizures (NCSz) contribute significantly to
poor outcome [1]. These seizures are different from con-
vulsive seizures as the patients have no or minimal symp-
toms other than decreased mental status while the brain is
seizing, making detection impossible in comatose patients.
There is a great deal of evidence that suggests that addi-
tional brain injury occurs secondary to NCSz [1].

Treatment is available but diagnosis poses major chal-
lenges because SAH patients are usually comatose thus re-
quiring detection from EEG alone and automated detection
algorithms to date have very poor accuracy even for more
well know seizure types. Controversy exists regarding the
preferred treatment regimen but unanimously experts agree
that the time to initiate treatment—soon after the onset
of seizures—is much more important than the choice of
seizure medication. Nevertheless, identification of the on-
set can be difficult and automated detection algorithms fall
short as surface EEG is notoriously contaminated by arti-
fact, including poor contact between EEG electrodes and
scalp, sweat artifact, electrical artifact, etc. To combat
some of these artifacts, intracrotical depth electrodes are
increasingly placed together with other invasive brain mon-
itoring devices and have the huge advantage of a better sig-
nal to noise ratio and better interpretation of other physio-
logic data collected invasively. Signals from such sources
would be an ideal to further develop seizure detection algo-
rithms with better specificity and sensitivity for seizures.

Diversity among seizures Seizures after acute brain in-
jury show a great deal of phenotypical variability. For ex-
ample, approximately half of the seizures remain focal and
do not spread to other brain regions. Patterns of seizures
further differ greatly in terms of maximum frequency, am-
plitude, duration, and background in between discharges.
The pathophysiological significance of these differences is
unknown but to study these differences accurate character-
ization of patterns is the first step.
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Figure 1: Broad view of our seizure analysis methodology. Given a
time series (x(t)), we estimate a power spectra at fixed intervals yielding
powers per frequency (ci(T j)) that are then treated as a multi-variate time
series (X(Ti)) that is then studied using EOF analysis.

3. Seizure detection and analysis

General decomposition of a time series Be-
gin with a time series of length MT , x(MT ) =

(x(1), x(2), · · · , x(MT )); the time series x(MT ) can be
split into M components indexed by k and denoted by
xk(t). Assume over the time period or window of calcu-
lation that the time series is ergodic and obeys the weak
stationarity property [3, 7]. In this paper we will begin
with an already estimated power spectrum of the EEG on
a moving window forming at a time series of finite length,
MT . We split this time series into M components of length
T and then decompose the disjoint time series on the M
windows using an EOF analysis.

Power spectra decomposition of EEG data One way to
represent a time series is via a decomposition into a set of
2n frequencies [3], λ j, or xk(t) =

∑n
j=−n c jeiλ jt; this repre-

sentation of xk(t) is called the Fourier transform [9, 3, 4] of
xk(t). In this framework xk(t) is conceptualized as a collec-
tion of harmonic terms parameterized by frequency. Each
frequency, λ j, has an instantaneous power associated with
it |c j|

2. Intuitively the power at a frequency quantifies how
much of x(t)’s signal is represented by the orthogonal com-
ponent, or harmonic term, c jeiλ jt, over the time window of
length T . This calculation yields the vector of powers for
given frequencies, Xk(t) = (|c1|

2, |c2|
2, · · · , |cn|

2), for each of
the M time series which generates a multivariate time se-
ries. Interpretively, power and variance are equivalent by
Parseval’s theorem [9, 3] which shows that the total power
in frequency space is equal to the variance in state space,
or: σ(xk(T )) = P(xk(T )) = 1

T
∑T

t=1 x2
k(t) =

∑n
j=−n |c j|

2.

Empirical orthogonal functional analysis Consider a
matrix of time series, X(Tk), where the columns index the
time points, and the rows index the variables (e.g., the fre-
quencies); this matrix is populated by |c j|

2’s. Assume we
have de-trended X(Tk) such that it is mean zero. Associated
with X(Tk) is its covariance matrix, Σ(Tk). By construc-
tion Σ is Hermitian so the eigenvalues are non-negative and
there will always exist an orthogonal basis (i.e., a set of or-
thogonal eigenvectors). We can decompose X(Tk) into or-
thogonal directions of maximum variance which is equiv-

alent to (cf. section 13.1 in [7]) decomposing X(Tk) into
eigenvectors corresponding to the eigenvectors of Σ(Tk) in
descending order. Specifically, decompose X(Tk) accord-
ing to X(Tk) = UΛVT where Λ is a diagonal matrix whose
eigenvalues, σi, represent the contribution of variance in a
given orthonormal direction in X(Tk). The orthogonal di-
rections of variance, or the EOFs, are then represented by
the Ui’s, which are the ranked eigenvectors of covariance
matrix Σ(Tk) = X(Tk)XT (Tk) = UΛUT . The first EOF
is the pattern representing the maximum variance within
X(Tk); or, more mathematically, the first EOF is the eigen-
vector that minimizes E(||X − 〈X, e〉e||2). Note, X(Tk) must
be at least a full rank matrix which in practice means that
k ≥ n.

We visualize the variation in X(Tk) by plotting the indi-
vidual EOF vectors, the Ui(Tk)’s, versus time, thus creating
a multivariate time series of length M. Moreover, we also
estimate and plot the time-dependent fraction of energy or
variance represented by the given EOF being plotted. Re-
call that the total power (variance), is the sum of the eigen-
values (the trace) of Σ(Tk), or σ(X(Tk)) =

∑n
j=1 λ j. Using

this, the fraction of the variance that EOF j represents is
λ j

σ(X(Tk) .
In many situations, only the first or second EOF are of

use; however, in our application the variables, power per
frequency, are often highly stratified. Meaning, often but
not always, the different EOFs represent the variation in
power of different frequencies. Because of this, it can be
useful to observe some EOFs with low fractional variance
if they represent frequency bands of interest.

Explicit details of the PS and EOF computations The
explicit algorithm we used in this paper follows four steps:
(i) collect a time series of PS data, which is estimated by
the machinery used to collect EEG data; (ii) determine a
suitable EOF window size, noting that k ≥ n, thus creating
the X(T j)’s; (iii) estimate the EOF on non-overlapping time
windows of the PS data, the X(T j)’s; and (iv) plot one or
more EOFs, a n-dimensional vector, in time (cf. Figs. 2
and 4).

Interpretation of the EOFs of the time series of PS of a
time series Moving back into the context where X(Tk) is
a matrix of time series of power per frequency, the inter-
pretation of PS, the first EOF, and the first EOF of the PS
are as follows.

Power spectrum of the time series: a time series can be
decomposed and represented as energy or power (if inte-
grated over time) of the frequencies that compose the time
series. Or, written differently, the time series can be rewrit-
ten in terms of power (variance) per orthogonal basis ele-
ment. In this situation, the basis elements are not chosen to
maximize any quantity, but rather as the frequencies present
in the data. Moreover, while the Fourier modes are orthog-
onal by definition, the power per frequency, represented by
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Figure 2: The 1st and 20th EOFs versus time before and after seizure
for power spectra of an EEG time series.

the components of the X(Tk) matrix, are not orthogonal.
First EOF of a multivariate time series: the orthogonal

direction that represents the direction of greatest (or maxi-
mized) energy or variance and can include portions of dif-
ferent frequencies (e.g., 3 Hz accounts for 20% , 5 Hz ac-
counts for 40%, etc.); the first EOF is a vector that spec-
ifies what proportions of which frequencies make up the
orthogonal vector in the direction of the maximum energy
or variance.

First EOF of the PS of a time series: the ranked (or or-
dered) proportional selection of frequencies that contribute
the most energy without overlapping (i.e., along the orthog-
onal component that captures or represents the maximum
amount of energy). This is equivalent to identifying the
frequencies, by proportion, that contribute the most to vari-
ance, or energy in the EEG signal. Because variance and
energy are synonymous, the first EOF of the PS of a time
series reveals the frequencies within the EGG signal that
are the most active, important, present, or energetic.

4. Results

Identifying high resolution EOF features before and af-
ter manually identified seizure events. To study the na-
ture of depth seizures in SAH patients, we applied EOF
analysis to the PS of the EEG for n = 20 ranging from 1 to
20 Hz recorded at 5 second intervals (T = 5min, k = 60) 30
minutes before and after seizure (M = 60min) for several
single patient with a SAH. The seizure onsets were manu-
ally identified by a neurointensivist. The signal via EOF of
the PS of the EEG revealed that at the onset of seizure, the
period of oscillation in frequencies changes. In the specific
patient shown in Fig. 2 at seizure onset a slow oscillation
appears in the first EOF representing the high frequencies;
in the twentieth EOF the oscillation in frequency changes
period from 25 to 12 minutes. This implies that as the dur-
ing the seizure, the set of excited frequencies is severely
constrained and highly organized. It is hoped that temporal
signatures such as these can be generalized to better under-
stand seizure, and to phenotype different types of seizure in
SAH patients.

Seizure visualization and detection prior to manual
seizure identification. A subset of the SAH patients we
study have a depth electrode inserted in their brain to mon-
itor electrical activity for clinical reasons and of these pa-
tients 18 of 48 displayed a “depth seizure,” or a seizure that

was not easily identifiable from the surface EEG. The PS
of the EEG was recorded once a minute with an n = 40 spit
into half a Hz intervals ranging from 1-20 Hz for the en-
tire length of the patient stay. Here we set T = 40 minutes
(n = k = 40).

In our example there are two features of the patient’s
time course we want to focus on.First, in the first quar-
ter of the time course, the patient had a focal NCSz event
detected with a depth electrode in the patients left hemi-
sphere; this event was relatively continuous. Second, for
the remainder of the time course the patient oscillated be-
tween no ictal (in other words no seizure or other ictal ac-
tivity state) and ictal-interictal (a state in between seizures
and no seizures). Both states were events predominantly
deep in the brain and only observable using the EEG col-
lected by the depth probe which was inserted in the right
frontal lobe. Figure 3 shows the PS of the surface EEG. In
these plots, only the strong initial seizure event is evident.
In contrast, the EOF of the PS signals, Fig. 4, reveals the
persistent depth seizure in the left brain only; neither the
whole brain nor the right brain have a single strong enough
to identify a seizure-like event in the EOF signal. This cor-
roborates what we expect in half of the depth seizure cases
— a localized seizure event that is not propagating through
the rest of the brain. Therefore, in this example, applying
the EOF to the PS of the surface EEG can help identify
depth seizure events using surface EEG data that are only
identifiable manually using the depth EEG and are manu-
ally unidentifiable using the PS of either the depth or the
surface EEG alone.

Seizure identification in a small population of SAH pa-
tients with and without seizure. A first step toward us-
ing an EOF signal to define a seizure phenotype is to de-
termine whether an EOF signal can be used to identify
seizure by humans at a broad level. Using a data set con-
sisting of 26 patients, 1 with a surface and 12 with depth
seizures, we compared EOF visualization to PS visualiza-
tion in correctly identifying seizures according to a gold
standard generated by a trained neuroscientist. Accuracy
was 88% for EOF versus 48% for PS, and the difference
was statistically significantly different by McNemar’s test
(p = 0.008) [5]. Similarly, using the EOF of the PS
there is a strong, statistically significant linear correlation
(ρ = 0.76, p = 10−5) between EOF-identified seizure and
the gold standard. There was no linear correlation between
the PS identified seizure and the gold standard. Relative to
the data set here, the EOF was not useful for differentiat-
ing depth versus surface seizure; this lack of effectiveness
is likely due to sample size (correlation for depth identifi-
cation was strong but not statistically significant).

5. Discussion

EOF analysis of the PS of EEG highlights the character-
istics of EEG that define seizure in SAH patients. More-
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Figure 3: PS of the EEG for the left, right, and whole brain (left to right) respectively. The Note that the persistent depth seizure in the left hemisphere
is not evident.

Figure 4: EOF of the PS of the EEG for the left, right, and whole brain (left to right) respectively; note depth seizure event is only apparent in the
EOF of the left side of the brain.

over, the EOF of the PS of the EEG makes manual identifi-
cation of seizure significantly easier and more reliable. As
is often the case, multiple levels of data analysis, e.g., esti-
mating the EOF of the PS of the EEG, can be very useful
for revealing the important temporal content.

Given the likelihood that seizures in SAH patients have
different implications for different populations of patients
(e.g., older patients, patients with greater injury, etc.), dis-
covering and quantifying the differentiating temporal sig-
natures and tying them to outcomes will be of critical sig-
nificance for both understanding and treating seizure in pa-
tients with SAH. Nevertheless scientifically controlled col-
lection of EEG data for SAH patients are rare if nonex-
istent. Here we show that it is possible to use physio-
logic data collected for clinical reasons to better under-
stand SAH-based pathophysiology, even though the data
are collected outside of a scientifically controlled environ-
ment and contain noise, missing values, clinical interven-
tion effects, and nonstationary trends. Nevertheless, much
work remains both to automate seizure detection in SAH
patients using the EOF of the PS, and to statistically define
the temporal signatures that can be used to differentiate pa-
tient health and predict patient outcome.
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