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Abstract—In this work, we address two fundamental
questions in the field of delay-coupled oscillators: Does
the synchronization between coupled oscillators necessar-
ily imply correlations? What can be inferred from the ab-
sence of correlations in networks of coupled nonlinear dy-
namical elements about their connectivity? We show that
for a realistic configuration of delay-coupled dynamical el-
ements negligible correlation or mutual information are ob-
served, although the elements are synchronized and deter-
mine each others’ behaviors completely. We employ for
these results delay-coupled Mackey-Glass oscillators, pre-
senting experimental results on the emergence of identi-
cally synchronized behavior between distant elements me-
diated via a signal with negligible correlations but synchro-
nized in the generalized sense.

1. Introduction

The seminal paper of Pecora and Carroll [1] created
a strong interest in the study of the synchronization of
coupled chaotic dynamical systems. This field started
in the early 1990’s and has been of great relevance ever
since. The first experimental demonstrations of chaos syn-
chronization were performed in coupled electronic circuits
[1, 2], starting a long-standing tradition of synchronization
studies exploiting the versatility of electronic circuit imple-
mentations.

Electronic circuits also allow for the experimental study
of delay-coupled nonlinear oscillators. We are referring
here to the cases in which delay is responsible for the gen-
eration of deterministic chaos, i.e. the nonlinear oscillators
are stable in the absence of delay. Examples of such a sce-
nario can be found in [3, 4], in which two electronic cir-
cuits are rendered chaotic by means of bidirectional delay-
coupling and/or delayed self-feedback.

Here, we extend these previous studies and check ex-
perimentally the synchronization and correlation properties
of networks with a significantly larger number of delay-
coupled oscillators. By doing so, we intend to question
the concept of relating correlation and synchronization in a
generalized sense.

2. Experimental implementation of a single oscillator

The nonlinear oscillator of our choice is an electronic
analog of a Mackey-Glass oscillator [3, 5], whose circuit
diagram is shown in Figure 1. The nonlinearity of such a
circuit is produced by two coupled complementary junc-
tion field-effect transistors (JFET), i.e., a p-channel and a
n-channel JFETs, and a resistor (R1 in Fig. 1). Its non-
linear voltage response function can be seen in Fig. 2, in
which the output voltage is a nonlinear function of the input
voltage. The value of the RC constant, RC = 0.47 ms (R4
and C1 in Fig. 1), limits the dynamical bandwidth of the
electronic analog used for demonstration purposes. Never-
theless, electronic circuits can reach higher bandwidths if
needed.

Figure 1: Circuit diagram equivalent of an individual
Mackey-Glass electronic oscillator.

The relevant parameters of the oscillator can be extracted
by fitting the nonlinear transfer function depicted in Fig. 2
to the following Mackey-Glass-type nonlinearity:

Xout =
aXin

1 + (bXin)c . (1)

The fit of the experimentally recorded nonlinear transfer
function using the equation above yields the following pa-
rameters: a = 2.1, b = 1/3 and c = 9.9. We have
checked that, in practice, different hardware implementa-
tions of the same electronic circuit diagram yield a param-
eter mismatch of a few percent (< 5%) around the previ-
ous values due to the tolerance range in standard electronic
components.

3. Experimental results with delay-coupled oscillators

In the experiments, we have coupled up to ten Mackey-
Glass oscillators (MGOs) in a unidirectional manner, as
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Figure 2: Experimentally recorded nonlinear transfer func-
tion of a Mackey-Glass oscillator.

shown in Fig. 3 (solid lines). We will show that this config-
uration does not present an identically synchronized state
when the oscillators are driven into the chaotic regime.
However, this does not prevent the oscillators in the ring
to be synchronized in the generalizd sense.

It was numerically predicted in Ref. [6] that the ring con-
figuration of unidirectionally delay-coupled oscillators can
produce a chaotic output signal, whose temporal and spec-
tral dynamics show a vanishing signature of the delay time
for an increasing number of delay-coupled elements. In
this configuration, the cross-correlation between distant el-
ements, e.g. elements A and B in Fig. 3, decays strongly for
an increasing number of elements in the coupling paths be-
tween A and B. Our experimental implementation includes
a maximum of 4 MGOs in each of the coupling paths be-
tween A and B, i.e. a ring of 10 unidirectionally delay-
coupled oscillators. In this configuration of delay-coupled
oscillators, the delay does not need to be equally distributed
in each coupling link, but the total delay can be located
in a single coupling link. Apart from the corresponding
time-shifts, this configuration and the configuration with
distributed delay yield the same results. Here, we set the
total time delay to a fixed value of 30 ms.

Figure 3: Schematic representation of two delay-coupled
Mackey-Glass oscillators (A and B) with 4 oscillators in
each of the coupling paths C and D (solid lines). In addi-
tion, element B is unidirectionally coupled to element F via
coupling path E (dashed lines).

The temporal response of each individual Mackey-Glass
oscillator in the delay-coupled configuration depicted in
Fig. 3 shows chaotic fluctuations of the output voltage.
In particular, the temporal dynamics of elements A and B
are shown in Figure 4 (a) and (b). We focus on the cor-
relation properties of elements A and B since the cross-
correlation between elements which are far apart in Fig. 3
decays to zero for an increasing number of mediating el-
ements [6]. We show in Figure 4 (c) the cross-correlation
between elements A and B (see Appendix A for a definition
of the cross-correlation quantifier). The maximum value of
the correlation between these two elements is 0.04, which
would decay even further if there were more elements in
the coupling paths C and D [7].

Figure 4: Experimentally recorded time-trace of the chaotic
dynamics elements (a) A and (b) B in the configuration
shown in Fig. 3, with a total coupling delay of 30 ms.
Cross-correlation of the chaotic dynamics of elements (c)
A and B and (d) A and F.

In the following, we show that it is possible to attain
identical synchronization between elements of a ring of 10
elements (4 elements in coupling paths C and D) and a
chain of 5 oscillators (4 elements in coupling path E) by
unidirectional coupling. The experimental setup is shown
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schematically in Fig. 3. The symmetry properties of the
ring and attached chain allow for the existence of an iden-
tically synchronized state, in which individual elements
of the ring are identically synchronized to individual ele-
ments of the chain. Our experimental results show that this
identically synchronized state indeed exists and it is robust
against fluctuations. Figure 4 (d) shows the correlation be-
tween elements A and F in our setup. The cross-correlation
between these two elements reaches a maximum value of
0.986, which is a proof of stable identical synchronization.
Interestingly, A and F are perfectly correlated while ele-
ments A and B share almost no correlation as shown in
Fig. 4 (c) and (d). For a perfect synchronization between
elements of the ring and the chain, nearly identical oscilla-
tors must be placed in equivalent positions in the coupling
paths C and E. This requires a strict selection and tuning of
the electronic components employed in the hardware im-
plementation.

In addition, we show in Fig. 5(solid line) that the mutual
information between elements A and B in the ring also de-
cays strongly when the number of elements in the coupling
paths C and D is increased (see Appendix A for a defini-
tion of the delayed mutual information quantifier). As pre-
sented in Fig. 5, this decay in the mutual information be-
tween A and B (solid line) does not prevent elements A and
F (dashed line) to share a nearly constant mutual informa-
tion for an increasing number of elements in the coupling
paths.

Figure 5: Maxima of the delayed mutual information be-
tween elements A-B (solid line) and A-F (dashed line) in
the configuration shown in Fig. 3 as a function of the num-
ber of elements in the coupling paths C, D and E.

The existence of an identically synchronized state be-
tween elements A and F requires the existence of a gen-
erally synchronized state between all elements in the ring.
The former statement is a consequence of our experimental
arrangement in Fig. 3, which has been designed to apply
the auxiliary system approach to detect generalized syn-
chronization [9]. As shown in Fig. 4 (c), elements A and B
share almost no correlation. Nevertheless, we find, via the
auxiliary system approach, that they are generally synchro-

nized.

4. Discussion and conclusions

The novelty of the results we present resides on the gen-
eralized synchronization between delay-coupled elements
whose dynamics show negligible correlations. We test the
existence of a generally synchronized state by using the
auxiliary system approach and finding an identically syn-
chronized state between elements in the ring and the aux-
iliary system. It is evident that two distant elements can
only be identically synchronized provided that the medi-
ating element, i.e. element B in Fig. 3, is synchronized
in the generalized sense to both of them. We illustrate by
example that generalized synchronization is robust against
fluctuations and small parameter mismatches with an ex-
perimental realization using delay-coupled Mackey-Glass
electronic circuits. We show that this is possible using
the synchronization between a ring of 10 unidirectionally
delay-coupled nonlinear oscillators and a chain of 5 ele-
ments. These results can be extended and complemented
with numerical simulations, showing that the correlation
and the mutual information between distant elements can
be arbitrarily low by increasing the number of oscillators in
the coupling paths [7]. In particular, Ref. [7] discusses the
existence of a generally synchronized state with negligible
correlations in simple network motifs of delay-coupled os-
cillators.
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A. Time-series analysis

In the data analysis, we have employed two differ-
ent statistical quantifiers, namely the cross-correlation and
the delayed mutual information. The normalized cross-
correlation (Xcorr) is a measure of the similarity between
two waveforms as a function of a time-lag applied to one
of them, and it is defined as

Xcorr(s) =
〈[x(t) − 〈x(t)〉]

[
y(t − s) − 〈y(t − s)〉

]
〉√

[〈x(t) − 〈x(t)〉〉]2 [
〈y(t − s) − 〈y(t − s)〉〉

]2
. (2)

The delayed mutual information (DMI) measures the infor-
mation on a given variable, i.e. x(t), that can be obtained
by observing the time-lagged version of another variable,
i.e. y(t-s), and it is defined as

DMI =
∑

x(t), y(t−s)

p(x(t), y(t − s)) log2
p(x(t), y(t − s))

p(x(t))p(y(t − s)))
, (3)
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where p stands for probability distribution function. In or-
der to process the time series, we have used an implemen-
tation based on the algorithm presented in [8].
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