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Abstract-When the target’s monostatic RCS (Radar Cross 

Section) is calculated by the traditional method sweeping with 
frequency and degree, the matrix equation of each interval point 

must be solved, which cost a lot of time. To solve the problem, the 
calculation method of monostatic RCS using method of moments 
is analyzed. Based on the BCGM (bistatic conjugate gradient 

method), one solving method using the last sweeping point result 
as the sweeping point initial iterative values is proposed. The 
numerical results indicate that the iterative times can be 

effectively reduced by the method, and the efficiency will be 
higher if the sweeping points are denser. 

I. INTRODUCTION 

The RCS of the target is relative to the frequency and the 

angle, so the matrix equation of the electric current 

distribution of the target is needed to be solved in frequency 

and angle domain. Using traditional frequency sweeping and 

angle sweeping calculating method, the matrix equation must 

be solved repetively at a series of points in the hope frequency 

and angle domain. For accurate solution, we must reduce 

frequency or angle interval, which means that the repetition of 

matrix equation solving increases greatly. It inevitably makes 

significantly increased amount of calculation and spending a 

lot of calculation time and computer memory. 

Matrix equation solving speed is a important factor that 

affects RCS computing time overall scanning range. 

Multilevel fast multipole technique  can reduce the computing 

amount  from 2( )O N  to ( log )O N N  [1-4].  Adopting 

conditional processing method can effectively reduce the 

number of iterations, which is very effective for the single 

scanning point [5,6]. But for the calculation of multiple 

scanning points, especially when scanning points are very 

dense, the iteration times of each scanning point won’t 

decrease due to the increased scanning points. The total times 

of iteration is still more. In this paper, the method using the 

last point iterative value as the current scanning point initial 

iterative value is presented. The method can effectively reduce 

the times of iterations. There are more populous scanning 

points (the smaller scanning interval), the iterations times of 

single scanning point will be less, and there will be higher 

efficiency. 

II. BASIC THEORY 

For 3d scattering problem, according to the ideal conductor 

surface boundary conditions, the electric field integral 

equation can be obtained. 
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incE  represents the incident field, ( , )G r r  is the green's 

function. The surface current of the scatterer is expanded with 

the RWG basis function [7], and the current basis function of 

the nth edge is 
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Scatterer surface current density can be approximated as 
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Galerkin’s method is adopted, which selects the basis 

functions as a test function. And the matrix equation was 

derived. 
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The scatterer surface currents can be got by solving the 

matrix equation, and the scattering field of the any point in the 

space will be calculated. The calculation formula of RCS is 
2
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Observing from equation 1, we can get mn nmZ Z , so 

the impedance matrix is a symmetrical complex matrix. 

Compared with the conjugate gradient method (CGM), 

one time matrix vector multiplication is only needed by 

using bistatic conjugate gradient method (BCGM). Under 

the same accuracy, BCGM needs a third of the iteration 

times of CGM. So, the computing can be speeded up 5 ~ 

6 times by using BCGM. But due to the calculation error, 

the generated impedance matrix is only a approximate 

symmetric matrix. In order to make the impedance matrix 

symmetry, after filling impedance matrix, a standard 

plural symmetric matrix is generated using the following 

method, and half of storage can be saved. 
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For the monostatic RCS calculation of the complex 

structure scatterer, if want to get accurate results, 

scanning points require relatively close, so scanning 

interval will be very small. Imagining that, if the angle or 

frequency interval are close to zero ( 0, 0f    ), 

then every changing of a scanning point, scatterer surface 

current distribution almost unchange, so the two adjacent 

scanning points’ results will be slightly different. Based 

on this idea, this paper puts forward a method of that 

using the last scanning point iteration value as the current 

scanning point initial iteration. It is easy to judge, the 

method will reduce the times of iterations and speed up 

the convergence. When 0, 0f    , it may not 

require iteration or a few times of iteration, the 

computation will quickly converge and meet the accuracy 

requirements. 

III. NUMERICAL CALCULATION AND ANALYSIS 

In order to verify the validity of the method, firstly, the 

monostatic RCS of a combination model of a sphere and a 

cone is calculated with angle sweeping. The sphere diameter 

and the bottom diameter and the height of the cone are  all  . 

The sphere center is located in the apex of the cone. For the 

incident wave frequency, the unknown number is 3717, and 

0   . With changing the angle of the incident wave, the 

monostatic RCS with different   are shown in figure 1.  

 

 

As can be seen from figure 1, the monostatic RCS will be 

more precise with the increase of the scanning points (   

reduced). For the irregular surface structure targets, more 

scanning points are needed to obtain accurate numerical 

results. The iterative times of each scanning point with 

different   are shown in figure 2. As can be seen from 

figure 2,   is smaller, the iteration times of each scanning 

point is less. The average iteration times of each scanning 

point with different   are shown in table1.  

TABLE I 
THE AVERAGE ITERATION TIMES OF EACH SCANNING POINT 

  1.0º 0.1º 0.01º 0.001º 0.0001º 

The number of 
scanning 

points 

181 1801 18001 180001 1800001 

The total 

iteration times 
37477 123586 261929 285842 289286 

The average 

iteration times 
207.06 68.62 14.55 1.59 0.16 

As can be seen from figure 2,   is smaller, the average 

iteration times is less.  

Secondly, the affection to monostatic RCS with different 

scanning intervals of frequency is studied. The monostatic 

RCS of a metal sphere is calculated. 0    and 0   , by 

sweeping the frequency of incident wave, the structure and the 

monostatic RCS are shown in figure 3. 

 
The average iteration times of each scanning point with 

different f (frequency interval) are shown in figure 4. f  is 

smaller, the average iteration times is less, by which the 

effection of the method is also verified. 
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Figure 4. The iterative times of each scanning point. 
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Figure 3. The monostatic RCS of a metal sphere. 
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Figure 2. The iterative times of each scanning point. 
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Figure 1. The monostatic RCS of the combination. 



IV. CONCLUSION 

For the calculation of the monostatic RCS of the targets 

with irregular surface structure, the scanning points are denser, 

and the results are more accurate. The numerical calculation 

indicates that, the method presented in this paper is very 

suitable for solving the dense scanning points problem. The 

scanning points populated more densely (the scanning interval 

are smaller), the less iteration times is needed, so the 

monostatic RCS calculating speed of the whole scanning 

range can be effectively improved. 
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