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Abstract—Intermittency is the textbook example of a

dynamics having different time scales: A fast dynamics

in the state and a slow jumping dynamics between them.

Sometimes it is quite easy to distinguish the different kind

of dynamics, since the states are well separated. An exam-

ple of this kind of dynamics is the intermittent dynamics

generated by a merging crisis: the states and sub–attractors

are mirror images of each other and therefore can be dis-

tinguished without effort. Here we report on a different

kind of crisis–induced intermittency, resulting from an in-

terior crisis. Especially if only one state variable of the

system can be observed, it is difficult to determine the state

in which the system currently is. We show that our method

is able to identify the states accurate using numerical data

from the logistic map and measurements from a diode os-

cillator.

1. Introduction

In nature systems often show dynamics on different time

scales. For example fast turbulent dynamics is a main fea-

ture of our earth’s atmosphere which is coupled to the much

slower oceans. It is obvious from this example that one

cannot and moreover might not want to model such a com-

plex system in all details. But before we can use stochastic

modelling or other methods to reduce the dimensionality of

a model, we need to understand how fast chaotic degrees of

freedom impact on the slow dynamics.

One class of systems that allows us to study this in-

terplay of fast and slow degrees of freedom are sys-

tems showing crisis–induced intermittency. In these sys-

tems a fast chaotic motion in the states lead to a slow

switching dynamics between the states. Ott, Grebogi

and York explored the statistics of the switching dynam-

ics and found universal scaling laws for the different

kind of intermittency scenarios[1]. Since then intermit-

tent systems have been intensively studied, using numer-

ical low–dimensional models[2] as well as experimental

data from high–dimensional systems[3]. They are a good

arch–systems to test stochastic modelling[4] and just like

stochastic systems they show stochastic resonance[5, 6, 7,

8].
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Figure 1: Diode resonator circuit consisting of a 1N4006
diode, an inductor L = 1mH, a resistor R = 51Ω,

and a sinusoidal drive U(t) = U0 sin(Ωt) with amplitude

U0 = 0V . . . 6V and frequency Ω/2π = 1MHz. Addi-

tional components for shielding and extracting the signal

which were implemented to minimise noise and cross-talk

are not shown.

Here we present an investigation that just wanted to ver-

ify that in another class of crisis stochastic resonance oc-

curs as well. Like often it turned out that the road we had

to travel, to get this verification, was much more interesting

than the result itself. We focussed on an experimental sys-

tem that shows intermittency due to an interior crisis. Un-

like merging crisis that have certain symmetries it is much

harder to distinguish between the different states. After we

introduced the experimental system in the next section, we

explain how we were able to distinguish the different states

in the time series analysis by using a return map. Given

the page restriction we are unable to explain the observed

stochastic resonance. But one can find the results in ref.[9].

2. Experimental Setup

Experimental data is somehow superior to just numer-

ical data. When conducting experiments the usual ”real

world” effects, like parameter drifts, dynamical and mea-

surement noise, influence the outcomes. In addition the

length of the time series is often restricted. Therefore a ver-

ification based on experimental data somehow guaranties

robustness.

We analysed data from a diode resonator, shown in Fig.1.

It is one of the simplest electronic circuits showing chaotic

dynamics. The non–autonomous circuit is driven by a si-
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Figure 2: Bifurcation diagram of the diode resonator con-

structed from the maxima of the output signal UR(t) at dis-

crete times tn.

nusoidal signal using an Agilent 33220A signal genera-

tor. Note that we chose the amplitude of this signal U0

as our control parameter and kept the frequency constant at

1 MHz. We recorded the output signal UR(t) using a Sig-

natec DA500A transient card with a maximum sampling

rate of 500MS/s.

To gain an understanding of the dynamics we record the

time series of UR as a function of U0 and generated the

bifurcation diagram shown in Fig.2. As we can see the os-

cillator follows a period–doubling route to chaos. We are

especially interested in the region around the period–three

window: U0 = 2.7V . . . 4.0V. At U0 = 2.7V the window

opens in a saddle node bifurcation where a pair of stable

and unstable period-three orbits is generated. As we can

see for control parameters above U0 = 3.5V the period–

three undergoes several period–doubling bifurcation and

around U0 ≈ 3.8V a chaotic attractor is formed. This

chaotic attractor collides with an unstable periodic orbit at

Uc = U0 = 4V which is the critical control parameter for

the crisis. This collision causes an interior crisis, which

is clearly visible in the bifurcation diagram by an abrupt

widening of the chaotic attractor. For our later analysis we

name the chaotic dynamics on the first attractor between

U0 = [3.8, ..., 4.0]V ”Ch1” and the new part of the phase

space occurring after the crisis ”Ch2”. For control parame-

ters above Uc the dynamics of the oscillator is characterised

by a fast dynamics in Ch1 or Ch2 and switching between

these states. In Fig.3 we see an example of the dynam-

ics before and after the crisis. This figure also explains

the principle problem we have when analysing such data

sets: the two states are convoluted in such a way that a

simple threshold method will not be able to distinguish be-

tween the states. In systems showing intermittency due to

a merging crisis such a method only works because of the

symmetry of the states[8]. In interior crisis the states are

quite asymmetrical and one need to apply more advanced

methods.

Figure 3: Density plots showing the projection of the at-

tractor onto the U -UR-plane as a screen shot from an ana-

log oscilloscope. Left: Driving amplitude U0 < Uc =
4.0V . Right: U0 > Uc.
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Figure 4: Typical time trace in the intermittent regime

showing a single burst.

3. Identifying the different states

Fig.4 shows a typical time series we want to analyse.

The highlighted part of the time series is one of the regions

where we have a short burst into the Ch2 state. As we can

see such a region is characterised by UR no longer show-

ing the period–three motion in the Ch1 state. Obviously

this periodicity results from the former stable period–three

orbit. While one might want to try averaging techniques,

previously successful applied to intermittent time series[3],

the chaotic motion in Ch1 will make such a method unre-

liable especially for Uc ≥ 4.5V. We therefore derived a

criterion bases on a return map.

For simplicity we are going to introduce this method by

analysing the interior crisis of the logistic map:

xn+1 = rxn(1− xn) ≡ Mr(xn) . (1)

As we can see in Fig.5 the logistic map has a similar interior

crisis. But unlike in the diode resonator we can analytical

determine the boundaries between the two states as well as

the unstable period-three orbit. At rc ≈ 3.8568 the crisis

occurs. Afterwards the first six images of g0 = x = 1/2,

gn(r) = Mn
r
(1/2), n = 1, 2 . . . , 6 determine the boundary

of the Ch1 state for r − rc ≈ 0, since the critical point is

contained in one of the chaotic bands and the three inter-

vals are mapped onto each other [2]. Beyond the crisis, for

r > rc, the borderline functions gn(r) are smooth continu-

ations of the precritical attractor defining the Ch1 state. For
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Figure 5: Skeleton of the logistic map in a neighbourhood

of the period three window. Solid lines: first six iterates

gn(r) of the critical point; broken line: unstable period-

three orbit. Labels refer to the phases ’Ch1’ and ’Ch2’.

maps with critical points these boundaries can be observed

as significant structures in the invariant density. They arise

from folding the phase space during one iteration step.

Since the derivative vanishes at the critical point a high

density is created at the next image points gn. For higher

iterations the density decays due to the stretching mecha-

nism of chaotic maps. This general mechanism constitutes

the basis of our further analysis. Symbolic dynamics tells

us that the three intervals [g2, g5], [g3, g6], and [g4, g1] con-

stitute the period-three chaotic state for r < rc while the

gaps are determined by (g5, g3) and (g6, g3). Thus, even

beyond the crisis we can define the two different chaotic

phases, Ch1 and Ch2, by the symbolic variable

σn =

{

+1 if xn ∈ (g5, g3) ∪ (g6, g4)

−1 if xn ∈ [g2, g5] ∪ [g3, g6] ∪ [g4, g1]
(2)

We now turn to the identification of the different dynamical

regimes in our experimental system. An appropriate return

map un 7→ un+1 can be constructed from the local maxima

un ≡ UR(tn) of the time series. By projecting the three–

dimensional chaotic system onto a single dimension (see.

Fig.7), we get a structure that is far more complex than the

one of the logistic map. In contrast to the logistic map the

projection of the three branches of the experimental band

attractor are no longer separated but partly overlap. Even

more, the Ch1 and Ch2 phases are highly intermingled and

we need a more sophisticated tool than eq. (2) to separate

the states.

Despite these difficulties the main ideas developed in the

context of the logistic map can be used. Again, the maxi-

mal value of the amplitude

g1 = max
n

{un} = max
t

{UR(t)} . (3)

is of crucial importance. If our dynamical system were the

logistic map then one of the preimages would be the crit-

ical point g0 causing the folding of the phase space. Sim-

ilar topological considerations apply to our experimental
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Figure 6: Diagrammatic view of the folding and stretch-

ing process of a chaotic three-band attractor. a) Below the

crises. Labels refer to the images of the ’critical point’ g0,

solid lines visualise the three bands which are mapped onto

each other. b) Beyond the crises. Dashed lines indicate

those parts which are not mapped onto each other any more.

results as well (cf. fig.7). The following five recursive im-

ages g2, . . . , g6, are again boundary points for each of the

three branches. Below the crisis, for U0 < Uc, one can

clearly observe that the different branches of the Ch1 at-

tractor are mapped onto each other and just like in the lo-

gistic map visited in a well-defined sequence (cf. Fig.6a).

After the crisis the combined folding and stretching maps

some of the images outside the starting branch (cf. fig.6b),

generating the Ch2–phase. The return map is neither a sin-

gle valued function nor are the different branches of the

phases well separated when projected onto the horizontal

axis. Therefore we cannot apply a threshold condition on

the amplitudes un, like eq.(2). But if we take into account

how the different branches of our return map are mapped

onto each other we can develop a simple recipe to decom-

pose the time series. The points g1 and g4 can be used to

isolate the non-overlapping first branch of the Ch1 phase. If

un ∈ [g4, g1] we assign the symbol σn = −1 to this event

and to the two following iterates. Those data points which

after three iterations do no longer fit into the branch cycle

fig.6 are attributed to the phase Ch2 by assigning a sym-

bolic coordinate with positive value. The symbol remains

σn = −1 until another event un ∈ [g4, g1] is detected.

By exploiting this technique the experimental time series

can be converted into a symbolic sequence, as was already

demonstrated for the logistic map. We use this sequence

for further analysis, e.g. for the evaluation of the mean resi-

dence times 〈τ1〉 and 〈τ2〉 of the two different phases, ’Ch1’

and ’Ch2’, respectively. The dependence of the mean res-

idence time on the control parameter U0 is shown in fig.8.

The mean ’laminar’ residence time 〈τ1〉 follows a power

law [1, 2, 10, 11]. The exponent is related to the geometric

properties of the attractor. The mean ’burst’ residence time

〈τ2〉 tends to a finite limit when approaching the crisis. An-
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Figure 7: Return map constructed from the local maxima of

the experimental time series UR(t) close to the crisis. La-

bels refer to the critical point and its images. The rightmost

branch of the ’Ch1’-phase remains well separated, while

the other branches overlap with each other and with parts

of the ’Ch2’-phase.
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Figure 8: Mean residence times of the diode resonator eval-

uated from the symbolic time series. 〈τ1〉 follows a power

law with a scaling exponent γ of 0.7 as predicted in [1].

alytic expressions for scaling exponents have been derived

in [12] for one-dimensional maps.

4. Conclusion

We started this investigation since a major constraint for

the identification of our stochastic resonance phenomenon

was caused by the proper identification of the different dy-

namical phases of the intermittent regime. As we have

mentioned before details of the stochastic resonance can

be found in Ref.[9].

We have ssen that for interior crisis the phases are highly

intermingled and one cannot apply a simple threshold con-

dition. We have employed here return maps and ideas bor-

rowed from symbolic dynamics for the purpose of state

identification. In such a way a quantitative criterion has

been developed to separate the different dynamical phases

which are related with the precritical attractor and the pre-

critical chaotic repeller, respectively. The approach con-

verts the time series into a symbolic representation which

allows the accurate determination of mean residence times

and for stochastic resonance cross correlation functions.
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