
IEICE Proceeding Series

Approximated Probabilistic Inference on a Dynamic Bayesian Network

Using a Multistate Neural Network

Makito Oku

Vol. 2 pp. 374-377

Publication Date: 2014/03/18

Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers

Downloaded from www.proceeding.ieice.org

Approximated Probabilistic Inference on a Dynamic Bayesian Network Using

a Multistate Neural Network

Makito Oku†

†Institute of Industrial Science, the University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Email: oku@sat.t.u-tokyo.ac.jp

Abstract—

Dynamic Bayesian networks (DBNs) are flexible tools

for modeling complex relationship among time-evolving

random variables. An application of DBNs to compu-

tational neuroscience is to represent the internal model,

which the brain uses to simulate the environment, as a

DBN. The exact inference on the DBN defines the opti-

mal behavior for both sensory and motor signal process-

ing. However, since the exact inference requires huge com-

putational resources, approximation methods are the key

to utilize the DBN representation. Here, I propose a new

heuristic algorithm for probabilistic inference on the DBN

using a multistate neural network. Each random variable

of the DBN is replaced by a multistate neuron, and the di-

rectional links of the DBN are translated into the nonlin-

ear interactions among the multistate neurons. To approxi-

mate backward dependencies among variables in the DBN,

the network supports a bottom-up error-reporting mecha-

nism against top-down predictions. The proposed method

is tested on a simple partially observable Markov decision

process task, and exhibits better performance than ancestral

sampling method.

1. Introduction

Graphical models such as Bayesian networks and

Markov random fields are useful tools to visualize the re-

lationship among random variables. They are also useful

for solving various tasks because efficient algorithms such

as belief propagation [1] have been proposed to solve in-

ference problems on graphical models. Dynamic Bayesian

network (DBN) model [2] is a graphical model that de-

scribes the structure of time-evolving random variables.

DBN model is a generalization of classical models such

as Kalman filter model and Hidden Markov model, and has

much higher representational flexibility.

Recently, DBNs have been applied to planning tasks

[3–5]. Planning tasks (for example, robot navigation) are

to select future actions to achieve the goal or to maxi-

mize the accumulation of reward/utility values. In fact,

DBN-based planning shows good performance. Verma and

Rao [4] showed that DBN-based planning achieves compa-

rable or even better performance in some benchmark tests

of partially observable Markov decision process (POMDP)

as compared to the state-of-the-art algorithms.

In the field of neuroscience, the notion of probabilis-

tic inference has been widely accepted in the context of

sensory signal processing [6–13]. Many experimental ev-

idences show that the brain behaves almost optimally as

Bayesian theory predicts. The theory even predicts ap-

parently irrational behavior such as illusion [9, 12]. Al-

though the probabilistic inference paradigm has succeeded

in explaining sensory signal processing, it is still unclear

whether the same viewpoint could work well for the motor

signal processing in the brain.

To answer this question, Oku and Aihara [14] proposed

to adopt DBN representation for the brain’s internal model

(see Fig. 1). In this internal model, both sensory signal pro-

cessing (estimation of the hidden state X from noisy and

limited observation Y) and motor signal processing (plan-

ning of future actions U given a certain goal state or its

distribution) are mathematically formulated. This frame-

work differs from reinforcement learning [15] in that we

calculate the posterior probability of future actions [3, 4]

rather than the optimal policy. This kind of model-based

computations may work with model-free computations (for

example, habitual behavior [16]) so that they play comple-

mentary roles [17].

The previous work [14] separated the sensory and motor

signal processing into two different probabilistic inference

Internal model

Agent

Environment
(Hidden state X)

Action UObservation Y

Agent

Environment

Figure 1: The agent interacting with its environment. The

agent repeatedly observes the environment and takes ac-

tions based on its motivation. The observation Y is limited

so that the true state of the environment X is hidden to the

agent. The agent uses its internal model to simulate this

loop, both for estimating the hidden state and for planning

future actions.

- 374 -

2013 International Symposium on Nonlinear Theory and its Applications
NOLTA2013, Santa Fe, USA, September 8-11, 2013

problems. If the two problems are combined to a single

problem, the exact inference on the DBN requires much

more computational resources. To overcome this, approxi-

mation methods are the key to utilize the DBN representa-

tion.

Many efficient approximation methods are known (for

more information, see Ref. [18]). However, if we con-

sider biologically plausible algorithms, i.e., algorithms that

can be performed by parallel processing in neural networks

and/or any other biological mechanisms, few studies are

found.

In this paper, I propose a new heuristic algorithm for

probabilistic inference on the DBN using a multistate neu-

ral network. This algorithm is biologically plausible be-

cause (1) a multistate neuron represents a neural population

with multiple attractor states [19], (2) the forward signal

transmissions in the network represent top-down predic-

tions whose nonlinearity can be explained by the existence

of intermediate neurons [20], and (3) the backward signal

transmissions represent bottom-up error signals whose ex-

istence has been predicted both in theory [21] and in exper-

iments [22, 23]. In addition, the proposed algorithm uses

asynchronous updating to represent parallelism in neural

processing.

2. DBN representation and the exact inference

Figure 2 shows the DBN representation of the internal

model [14]. The agent-environment loop is expanded in

the time domain. Each node represents a random variable,

and the links define dependencies among the variables. A

special node labeled as R is added to incorporate the notion

of reward or utility. Precisely, any reward value is normal-

ized to [0, 1] and represented as a probability measure.

The DBN consists of 4 mappings: the observation model

P(Yk | Xk), the state transition model P(Xk+1 | Xk,Uk+1),

constraints on the actions P(Uk+1 | Xk), and the reward

model P(R | Xt+1:t+TF
), where t denotes the current time

step and TF denotes the length of the time window for fu-

ture planning. Node R takes either 0 or 1, and P(R =

1 | Xt+1:t+TF
) represents the normalized reward values

[3–5, 24].

Figure 3 shows the inference problem on the DBN. At

any time step, past observations and the previously taken

actions are known to the agent, which makes the nodes’

values fixed (shaded in Fig. 3). In addition, the reward

node’s value is fixed to 1, representing an optimistic view

of the future. Our task here is to find the best sequence of

future actions (marked in red) that maximizes the probabil-

ity to realize the optimistic assumption.

In our previous work [14], the inference problem was

separated into two parts. One is the estimation of the cur-

rent hidden state Xt. The other is the future planning based

on the best estimation X̂t. In this paper, the two inference

problems are combined to a single problem. That is, the

distribution of Xt rather than the best estimation X̂t is used

Observations

Actions

Hidden states

Current time

X1 X2 X3

Y3Y1 Y2

U3U2

X4 X5 X6

Y6Y4 Y5

U6U5U4

R Reward

Figure 2: The DBN representation of the internal model.

Observations

Actions

Hidden states

Current time

X1 X2 X3

Y3Y1 Y2

U3U2

X4 X5 X6

Y6Y4 Y5

U6U5U4

R Reward

Estimation targets

Figure 3: Inference on the DBN model.

for planning.

For simplicity, we assume that every variable is discrete.

Then, the full inference problem is described as follows:

P(Ut+1:t+TF
| Y1:t,U2:t,R) =

∝
∑

X1:TF

P(X1)

t+TF
∏

k=2

P(Xk | Uk, Xk−1)P(Uk | Xk−1)

×

t
∏

k=1

P(Yk | Xk)

P(R | Xt+1:t+TF
)

. (1)

3. Approximation algorithm

To approximate the posterior distribution in (1), I pro-

pose a heuristic algorithm based on a multistate neural net-

work. The network is constructed as follows. First, each

node of the DBN is replaced by a multistate neuron. The

number of each neuron’s states are the same as that of the

corresponding variable. Then, the neurons are directionally

connected according to the DBN. These connections serve

as the forward dependencies among variables of the DBN

(for example, the state transition model P(Xk+1 | Xk,Uk+1)).

In addition, we also consider backward signal transmis-

sions through the connections, which convey error signals

against the forward models’ predictions.

- 375 -

The network is updated asynchronously. In each itera-

tion, a neuron is selected. For simplicity, we assume that

the order of selection is from upstream to downstream neu-

rons. Let us denote the current state of the selected neuron

i as zi ∈ {1, 2, . . . , ni}. If the neuron’s state is not fixed, it

is updated stochastically according to the neuron’s internal

potential Hm
i
(m = 1, . . . , ni) as follows:

P(z′i = m) ∝ exp(βHm
i), (2)

where β is the inverse temperature that globally modulates

the network dynamics. This update strategy is based on the

softmax function, which is a natural generalization of the

logistic function commonly used for binary neurons.

If the selected neuron’s state is fixed, we do not update

the neuron’s state, but just generate z′
i
stochastically in a

similar manner. Then, the two states zi and z′
i
are com-

pared. If they are different, the neuron sends an error sig-

nal ei = −1 to all of its parent neurons Pa(i). Otherwise,

no error is reported, i.e., ei = 0. The error signal makes the

parent nodes avoid their current states in the subsequent it-

erations. Although the error signal is not very informative

immediately due to the stochasticity of z′
i
, its time-averaged

value becomes a rough approximation of the log-likelihood

for parent nodes ln P(Zi | ZPa(i)).

The internal potential is the sum of the top-down pre-

diction from the parent neurons Fm
i
(ZPa(i)) and the time-

averaged error signals from the child neurons h′mi as fol-

lows:

Hm
i = Fm

i (ZPa(i)) + h
′m
i , (3)

Fm
i (ZPa(i)) = ln

(

P(zi = m | ZPa(i)) + ǫ
)

, (4)

h′
m
i =

{

γ hm
i
+ (1 − γ)

∑

j∈Ch(i) e j (zi = m),

hm
i

(otherwise),
(5)

where γ denotes a decay factor of the accumulation of error

signals and Ch(i) denotes the indexes of the child neurons

of neuron i. A small positive number ǫ is introduced to

avoid ln 0 = −∞. hm
i
is the current value of average error

signals, and h′mi denotes its new value.

Let a cycle denote a set of iterations in which all the

neurons are selected once. In the end of each cycle, we take

the entire network state as a sample if no error is reported

at any neuron. This means that we collect realizations of

variables that do not conflict with either past observations

or past actions and suffice the given reward criteria.

4. Simulation results

We tested the algorithm on a simple POMDP task as

shown in Fig. 4. This task is a simplification of benchmark

problems presented in Ref. [25]. Note that the robot’s state

depends on both its location and direction. Therefore, the

total number of states is 48. If we set the time window for

future planning TF to 10 and that for retrospective compu-

tation TB to 5, the total number of possible combinations of

variables are 4815 · 815 · 314 · 2 ≃ 5.6× 1045. Obviously, any

Rotate rightRotate left

Go forward
(a) (b)

(c)

G

Figure 4: A simple POMDP task. (a) The maze in which

the robot moves around. Thin lines define the grid which

the robot can pass through, and thick lines are walls. “G”

denotes the goal position. (b) The robot takes three types

of actions. “Go forward” moves the robot to the next grid

in front of it. “Rotate left” and “rotate right” changes the

robot’s direction 90 degrees. (c) The robot uses sensors to

detect walls next to the current grid in three directions.

16 64 256 1024 4096
0

20

40

60

80

100

120

140

Number of cycles

N
u

m
b

e
r

o
f

s
te

p
s

Proposed method

Ancestral sampling

Figure 5: Comparison between the proposed method and

ancestral sampling. The average number of steps over 100

trials are shown. The dashed line indicates the average

number of steps in the case of random action selections.

efficient algorithm is needed to solve the inference prob-

lem.

The simulation settings were as follows. The start po-

sitions and directions of the robot were randomly chosen

in each trial. Each trial was terminated when the robot

reached the goal or the number of steps exceeded 200. The

normalized reward value was 1 if the planned path could

visit the goal. Otherwise, it was 0, i.e., such a planned path

was just discarded. If no sample was obtained within the

specified number of cycles, the next action was randomly

chosen. Parameters were: β = 2, γ = 0.95, ǫ = 0.0001,

TF = 10, and TB = 5.

Figure 5 shows the comparison between the proposed

algorithm and ancestral sampling. Ancestral sampling is a

classical Monte Carlo sampling method that only uses the

forward models and does not utilize the backward depen-

- 376 -

dencies among variables. As Fig. 5 shows, both methods

were no better than random actions for small number of

cycles. However, the average number of steps decreased

as the cycle number increased for both methods, and the

proposed method exhibited much better performance than

ancestral sampling for hundreds of to thousands of cycles.

The two curves eventually converged to a small number of

steps.

The advantage of the proposed method over ancestral

sampling can be explained as follows. The proposed

method uses bottom-up error signals so that parent nodes

prefer error-free states to error-reported ones. Therefore,

the proposed method is more efficient than ancestral sam-

pling to generate samples consistent with the fixed vari-

ables. This yields more precise approximation of the poste-

rior probability of future actions, which may lead to smaller

number of steps.

5. Conclusions

In this paper, I have proposed a new heuristic algorithm

for probabilistic inference on DBNmodel based on a multi-

state neural network. The algorithm was developed in con-

sideration of biological plausibility as well as efficiency.

The results of numerical simulations revealed that the pro-

posed algorithm works well for a simple POMDP task.

One of the major challenges is to improve the error-

reporting mechanism. Its approximation quality of the par-

ent nodes’ log-likelihood functions is not high. Another

problem is that the proposed method is sensitive to the up-

date order. If we update neurons in a random order, the

performance of the algorithm is deteriorated, which should

be solved in future works. In addition, we took samples if

no neuron reports an error. However, the real brain may not

utilize such global information. Therefore, any alternative

way that is locally computable is worth considering.

Acknowledgments

This work was supported by JSPS KAKENHI Grant

Number 24800013.

References

[1] J. Pearl, Artif. Intell., 29(3):241–288, 1986.

[2] K. P. Murphy, Dynamic Bayesian Networks: Repre-

sentation, Inference and Learning. PhD thesis, Uni-

versity of California, Berkeley, 2002.

[3] H. Attias, in Proc. AISTATS’03, 2003.

[4] D. Verma, R. P. N. Rao, in Proc. IROS’06, pp. 2382–

2387, IEEE, 2006.

[5] M. Botvinick, J. An, Adv. Neural Info. Proc. Syst.,

21:169–176, 2009.

[6] K. P. Körding, D. M. Wolpert, Nature,

427(6971):244–247, 2004.

[7] D. C. Knill, A. Pouget, Trends Neurosci., 27(12):712–

719, 2004.

[8] M. Miyazaki et al., Nat. Neurosci., 9(7):875–877,

2006.

[9] Y. Sato, T. Toyoizumi, K. Aihara, Neural Comput.,

19(12):3335–3355, 2007.

[10] K. Doya et al., eds., Bayesian brain: Probabilistic

approaches to neural coding. The MIT Press, 2007.

[11] Y. Sato, K. Aihara, PLoS One, 6(4):e19377, 2011.

[12] K.-I. Sawai, Y. Sato, K. Aihara, Front. Psychol.,

3:524, 2012.

[13] P. Berkes et al., Science, 331(6013):83–87, 2011.

[14] M. Oku, K. Aihara, SEISAN KENKYU, 65(3), 2013.

(in Japanese).

[15] R. S. Sutton, A. G. Barto, Reinforcement Learning:

An Introduction. MIT Press, 1998.

[16] B. W. Balleine, A. Dickinson, Neuropharmacology,

37(4-5):407–419, 1998.

[17] N. D. Daw, Y. Niv, P. Dayan, Nat. Neurosci.,

8(12):1704–1711, 2005.

[18] C. M. Bishop, Pattern Recognition and Machine

Learning. Springer, 2006.

[19] M. Oku, K. Aihara, in Proc. ICCN’11, pp. 213–219,

2011.

[20] M. Oku, K. Aihara, Phys. Lett. A, 374(48):4859–

4863, 2010.

[21] R. P. N. Rao, D. H. Ballard, Nat. Neurosci., 2(1):79–

87, 1999.

[22] S. O. Murray et al., Proc. Natl. Acad. Sci. U.S.A.,

99(23):15164–15169, 2002.

[23] L. H. Arnal, V. Wyart, A.-L. Giraud, Nat. Neurosci.,

14(6):797–801, 2011.

[24] G. F. Cooper, in Proc. UAI’88, pp. 55–63, 1988.

[25] M. L. Littman, A. R. Cassandra, L. P. Kaelbling, in

Proc. ICML’95, pp. 362–370, 1995.

- 377 -

