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Abstract—Often, one is faced with measured time se-
ries data from some (presumed to be deterministic) dynam-
ical system. The problem is to correctly infer the true, or at
least, likely, underlying dynamical system from data alone.
A variety of methods exist to achieve this — under the gen-
eral umbrella on nonlinear modeling and machine learning.
These methods fit a surface (usually smooth) to the data in
such a way that that surface can be used as a proxy for the
evolution operator of the original system. Unfortunately,
different methods produce different results. Worse still, due
to the nonlinearity inherent to the problem, even the same
method will produce a range of distinct local minima. The
aim of this report is to apply an ensemble of dynamical
measures of system behaviour to show how one can deter-
mine which models behave most like the underlying data.

1. Introduction

For most experimental nonlinear systems it is not possi-
ble to write down a closed-form analytic description of the
dynamics. In such situations it is therefore appealing to ap-
ply the methods of delay reconstruction [7] and nonlinear
modelling [4] to estimate the underlying evolution opera-
tor. One can then use this estimate to study properties of the
dynamical system which it represents, and then extrapolate
this to the experimental system of interest. This second
step can be rather problematic. In 2009, Small and Carmeli
[5] re-examined an earlier work of Marquet and co-workers
[3]. Marquet et al. [3] sought to construct a global nonlin-
ear model from time series data of Canadian Lynx popu-
lations. Based on their models they demonstrated that the
data is potentially consistent with chaos — moreover, they
were able to claim that the chaotic dynamics of the models
was direct evidence of chaos in a real ecosystem. While
it is true that their model — a best fit to the observed data
— did indeed exhibit the desired “interesting” chaotic dy-
namics, it would not be true to infer that this is the only
reasonable explanation of this data. In [5] we showed that
it is equally likely that the data could be described as a pe-
riodic orbit. Moreover, for our models (using a different
modeling algorithm from Marquet and co-workers, which
we will explain below) when interesting chaotic dynamics
did arise this turned out to be transient — with a time scale
much longer than the time scale of the original data. In Fig.
1 we plot the original data used by both [3] and [5] together
with an ensemble of these model simulations.
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Figure 1: The Canadian Lynx time series : chaotic or
periodic? The upper panel shows the original data (open
circles) from which various global nonlinear models have
been built. The lower panel depicts the dynamical be-
haviour of three such models. The horizontal axis in the
upper panel is the observation year: one data point per year.
In the lower three panels the horizontal axis are in units of
model time steps: 10 time steps per year. The dynamics
observed in the lower three panels are: chaotic, almost pe-
riodic and exactly periodic.

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 373 -



For the Canadian lynx data depicted in Fig. 1 model
simulations — with the addition of a dynamic noise term
— all appear qualitatively to behave very like the observed
time series (this was extensively demonstrated in an earlier
contribution to an earlier iteration of NOLTA [5]).

Given that the single data set can give rise to a range of
equally plausible models, the natural question which arises
is: which model is best? For short term predictability one
can quantify the performance of various models with “hon-
est” prediction error: the root mean square model error
when applied to previously unseen data. A useful proxy for
this measure, circumventing the need to acquire additional
data is minimum description length [2]. Unfortunately, this
does not necessarily translate to the best model for long
term prediction. Nor does this necessarily lead to a good
model description of the underlying system dynamics. In
some sense, it is not really appropriate to ask “which model
is correct?” Since the data is always finite and contami-
nated by noise, there will always be a range of plausible
explanations — although some may be better than others.
What we attempt to do here is find, from a range of alter-
natives, which model best matches the observed data.

To achieve this aim we do the obvious thing. For each
candidate model we compute a range of desirable features
from noisy simulations of that model. We compare these
statistics to the same quantities computed from the data,
and then seek the best match. In a sense, this is a reformu-
lation of the strategy proposed in [6] to extend surrogate
data methods to arbitrary model classes. The main differ-
ences are that we do not restrict ourselves to comparing
a single distribution, nor are we constrained by the need
for a well formulated null hypothesis. In practice we find
that the existing nonlinear time series measures are useful
indicators of which models are good. But that these tra-
ditional measures work even better when supplemented by
motif rank distribution and other complex network mea-
sures which were first introduced in [9]

In the next section we briefly introduce the experimental
system of interest and describe the range of computational
and statistical tools we employ. Following a brief summary
of the results of these calculations we conclude.

2. The dynamics of jamming-unjamming in a granular
assembly

The system we study here is a particle-based (discrete
element) simulation of a granular assembly in the so-called
“critical state regime”. That is, a system of particles in a 2-
D box subject to axial compression at a constant rate (this
constant rate is what allows us to treat this as a time series)
and laterally confined with constant pressure. This assem-
bly exhibits a fluctuating global shear stress. In the sort
of physical system modeled by this simulation, this criti-
cal state coincides with a fully developed single persistent
shear band. Clearly this is an important physical system
for the understanding of a wide range of geophysical phe-
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Figure 2: Biaxial compression test The observed time
series of the bulk measurement of the shear stress ratio
with respect to axial strain. The strain interval of inter-
est is indicated by the bolder blue trace and covers the
high strain post-peak regime (so-called critical state) where
the material has failed and the response is in approximate
steady state exhibiting characteristic stick-slip (jamming-
unjamming) dynamics.

nomena including, for example, the dynamics of mature
faults. However, the complex nature of the system means
that the best available models are computation models of
the large scale complex system. We are interested in de-
termining whether a simpler mathematical description may
suffice. Data from this process — which is used extensively
throughout this report — is illustrated in Fig. 2. The un-
derlying simulations are described in more detail elsewhere
[8].

3. What is the best model?

We now turn our attention to answering the central ques-
tion of this paper: which model will do best for the data
described in the previous section? Moreover, what does
that model really tell us about the underlying dynamics?

Figure 3, 4, and 5 depict comparisons of the behaviour
of the model and the time series for models exhibiting: a
stable node (Fig. 3); a stable focus (Fig. 4); and, transient
chaos (Fig. 5). In each case we employ the Gaussian Ker-
nel Algorithm [1, 10] to measure correlation dimension,
entropy and noise level (three nonlinear measures depen-
dent on a time delay-reconstruction of the data). We also
show higher order properties of the data probability distri-
bution: kurtosis and skewness. These computations show
that the data and model simulations are most similar when
the model exhibits transient chaos.

The point is further confirmed when we employ the com-
plex network based measures introduced in [9]. Fig. 6 il-
lustrates that the simulations most consistent with the data
come from models which exhibit a transient form of chaos.

Moreover, in Fig 7 when we examine this system more
closely we see two distinct chaotic dynamics: one fast and
small and one slow and large. These two dynamics have in-
dependent basins of attraction, and in the presence of noise
the system dynamics switch between the two states. The
large slow state corresponding to the stick-slip phenomena
in the original data and the smaller fast system to more
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Figure 3: Stable node We compare the behaviour of model
simulations to the original data for models exhibiting a sta-
ble node. For the three error bar plots we show comparison
of the model simulations and original data with measures
derived from the Gaussian Kernel algorithm : correlation
dimension, entropy, and noise level. In each case we plot
the mean and standard deviation (the tighter red error bars)
and the full range (green). Distribution of both kurtosis and
skewness, together with values for the data and illustrated
as histograms. We use 100 simulations from a model of the
data driven by noise. In the absence of noise this model
exhibits a stable node.
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Figure 4: Stable focus The data displayed here is in the
same format as Fig. 3. In the absence of noise this model
exhibits a stable focus.
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Figure 5: Transient chaos The data displayed here is in the
same format as Fig. 3. In the absence of noise this model
exhibits a transient chaos (typically over a time scale longer
than the observed data) and a stable fixed point.
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Figure 6: Motif frequency distribution Models simu-
lation exhibited one of three distinct motif super-family
memberships: ADBCEF (the same as observed for the
data), ABDCEF, and ADBECF. For each of these motif-
super-families the cluster of three vertical bars indicates the
frequency (raw count) with which models exhibiting each
of these motif super-families also exhibited: a stable node;
a stable focus, or transient chaos. Clearly, the stable fo-
cus is not consistent with the data whereas transient chaos
models offer the most likely explanation.
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Figure 7: Sample trajectory The top panel depicts a sin-
gle noise free simulation exhibiting transient chaos-type
dynamics: note the two distinct chaotic dynamic regimes
— in addition to the eventual stable fixed point. The lower
panel is an embedding of the same data (colour coded to
depict different dynamical regimes).

complex irregular interaction. The existence of a stable
node (to which the system eventually converges) is inter-
esting but probably as likely to be a numerical artifact (the
time scale required for this feature to emerge exceeds the
available data.
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