
A Near-Surface Interpolation Scheme Based on 
Radial Basis Function 

 
Can Lin PAN, Ming ZHANG and Ya Ming Bo  

College of Electronic Science & Engineering,  
Nanjing University of Posts and Telecommunications, Nanjing 210003, China 

ymbo@njupt.edu.cn 
 

 
Abstract- The interpolation points adopted in the radial basis 

function (RBF) can be scattered. Based on the above fact, a near-
surface interpolation scheme is proposed to combine RBFs for 
the scattering problems modeled with surface integral equations. 
The interpolation efficiencies of different RBFs with the 
proposed and Tartan grid schemes are compared to approximate 
the interactions between well-separated groups. It can be seen 
from the numerical results that the number of interpolation 
points is reduced significantly for all four RBFs, and the 
accuracy of the Gaussian RBF is better than the other three 
RBFs for different sizes of groups. The proposed scheme with 
GA RBF can be employed to build a fast solver. 

I. INTRODUCTION 

The method of moments (MoM) using RWG basis 
functions [1-2] is widely used to solve 3-D electromagnetic 
scattering problems. Surface discretization is required in the 
MoM as opposed to volumetric discretization in the finite 
element method (FEM) and the finite difference time domain 
(FDTD) method. However, it is well known that the matrix 
given by the moment method is dense, which results in that 
high time cost is needed for the matrix-vector multiplications 
in an iterative solver. Hence, various fast algorithms [2] have 
been developed to accelerate the computing proceduce. The 
key step in these fast algorithms is to find an effective 
approximation of the interaction between two well-separated 
groups. 

H-matrix [3] and H2-matrix [4] techniques proposed 
recently can be regarded as general mathematical frameworks 
to combine various matrix approximations to accelerate an 
iterative solver. Lagrange polynomials interpolation can be 
employed to build a degenerate approximation of the 
interaction between two well-separated groups [5]. Similar 
works can be found in the multilevel Green’s function 
interpolation method (MLGFIM) [6-9], a kernel independent 
approach, which has been successfully used to solve low-
frequency [6] and full-wave electromagnetic problems [7]. 
Radial basis functions (RBFs) have been introduced to instead 
of the Lagrange polynomials to improve the computational 
performances of MLGFIM [7]. Furthermore, two different 
staggered interpolation point schemes [7-8] have been 
designed to reduce the number of interpolation points. 

However, for the scattering problems modeled with surface 
integral equations, the unknowns are only distributed on the 
surface. The improvement of the computational efficiency is 

limited with the existing interpolation schemes, which are 
similar to the uniformly-spaced rectangular grids in adaptive 
integral method (AIM) [10]. To further reduce the number of 
interpolation points, a near-surface interpolation scheme is 
developed in this paper. The interpolation efficiencies of 
different RBFs with the proposed and Tartan grid schemes are 
compared. The shape parameter which is sensitive to the cube 
length and the number of interpolation points is also discussed. 

II. THEORY 

A. Radial Basis Function Interpolation 
With the framework of H-matrix, a 3-D arbitrarily shaped 

object is recursively divided into smaller groups of different 
sizes. The well-separated groups are obtained according to 
their sizes and the distance of the two groups. Then the 
interaction between these groups can be approximated using 
interpolation technique 
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where ( ), jkR 4g e Rπ−′ =r r  is the free space Green’s function, 

( )p iw r  and ( )q jw ′r  are the pth and qth interpolation functions 

in the field group i and source group j,  and ,i pr ,j q′r  are the pth 
and qth interpolation points, respectively. Additionally, K is 
the number of interpolation points. Once the degenerate 
approximation is obtained, it can be integrated into H-matrix 
or H2-matrix frameworks to establish a fast solver. 
  A function ( )f r  interpolated with RBFs can be expressed as 
follows: 
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the corresponding coefficients. Several infinitely smooth 
RBFs are listed in Table I, c is the shape-controlling parameter 
of the functions. 
  Although it has been verified that RBFs interpolation can 
provide better interpolation accuracy than Lagrange 
polynomials interpolation, RBFs do not satisfy the Kronecker 
delta condition, i.e., 
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TABLE I 
INFINITE SMOOTH RBFS 

Type of RBFs ( )iϕ r  

Gaussian (GA) 
2

ice− −r r  

Inverse quadratic (IQ) ( )2 21 i c− +r r

Inverse multiquadric (IMQ) 2 21 i c− +r r

Multiquadric (MQ) 2 2
i c− +r r  

 
which is important for the construction of high quality 
interpolation, and makes it easier to get the coefficients in (2). 
In order to obtain the orthogonal RBFs, a normalized 
orthonormalization can be utilized to get a set of auxiliary 
functions { } 1

K
i i

ψ
=

, which is a linear combination of the RBFs 
and satisfies Eq. (3). 
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Substituting (4)into (3), a matrix equation can be obtained, 
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where I  is a K-by-K unitary matrix. The singular valued 
decomposition (SVD) algorithm [11] is adopted to get the 
coefficients ,i jγ  because the matrix ϕ  consisted of RBFs is ill 
conditioned for a large matrix size K. Then the normalized 
orthogonal auxiliary functions ( )iψ r  are obtained and 

employed to interpolate the function . ( )f r
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In this way, the functions ( )p iw r  and ( )q jw ′r  in (1) can be 
expressed in the interpolation form [7-8].  

B. Near-Surface Interpolation Scheme 
From the interpolation theory, it is known that the function 

value of a point is a linear combination of interpolation basis 
functions, and such a value can mainly be determined by 
contributions of the nearby interpolation points. 

Fig. 1(a) shows 2-dimensional Tartan grid. The number of 
the interpolation points marked with small dots within Tartan 
grid is determined by the size of the group region. The two 
different staggered Tartan grids proposed in [7-8] involve all 
the interpolation points in the region. However, for solving 
surface integral equations, only part of the points is near the 
surface, which can be seen from Fig. 1(b). The surface is 
represented by the curve. Most of the interpolation points 

within Tartan grid are far away from the surface. It is found 
that good interpolation accuracy can still be achieved without 
the interpolation points far away from the surface. Hence, a 
near-surface interpolation scheme is proposed, which is 
illustrated with bigger black dots in Fig. 1(b). The required 
interpolation points for interpolation can be limited with the 
condition 

i s dα− ≤r r                                        (7) 
where i  and r sr  are the points from Tartan grid and the 
surface, d is the distance of two adjacent interpolation points, 
α is a factor used to control the bounds of interpolation points. 
With the increase of the factor α , the proposed scheme 
behaves more similar to Tartan grid. A small α  may give low 
interpolation accuracy. It is recommended that the factor α is 
set to 1. 02. 

  
(a)  Tartan grid 

 
(b) the proposed scheme 

Figure 1. 2-dimensional interpolation point schemes 
 

III. NUMERICAL RESULTS AND DISCUSSION 

The accuracy and efficiency of the near-surface 
interpolation scheme are verified with the test examples in this 
section. The results of different RBFs with Tartan grid are 
given as a reference, and then the interpolation relative errors 
of different RBFs with the proposed scheme are calculated. 

In the first example, the interpolation efficiencies of 
different RBFs with Tartan grid are compared for groups of 
different electrical sizes. The results are listed in Table II. The 
interpolation error threshold is set to 0.02. The interpolation 
relative error is calculated with the following formula, 
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where  is the interpolated approximation of ( , ′G r r� ) ( ), ′G r r , 

F
i  denotes the Frobenius norm. 

From Table II, it is found that the interpolation with the 
Gaussian (GA) RBF obtains better interpolation accuracy than 
the other three kinds of RBFs, which is consistent with the 
results in [7-8]. 

The efficiency comparisons of different RBFs with the 
near-surface interpolation scheme are listed in Table III. In 
this example, spheres with diameters of different wavelengths 
are divided uniformly into 8 groups of different sizes. It can 
also be found that the interpolation with the GA RBF obtains 
the best performance, and less interpolation point numbers are 
needed for all four RBFs to satisfy the error threshold. 

It can be seen from Table II and III that the numbers of 
interpolation points are reduced drastically for all RBFs with 
the proposed scheme, and the increase of the interpolation 
point number of the proposed scheme is much slower than the 
Tartan grid with the increase of group sizes, which can be seen 
explicitly in Fig. 2. When the group lengths are larger than 
2.5λ, it is more difficult for Tartan grid to obtain the pseudo 
inverse using the singular valued decomposition (SVD) 
algorithm than the proposed scheme. Hence, the near-surface 
interpolation scheme with the GA RBF is more suitable for 
interpolation of large groups. 

Fig. 3 shows the interpolation error of the GA RBF versus 
the shape parameter c of groups with length of 2 wavelengths. 
A sphere with a diameter of 4 wavelengths is demonstrated, 

 TABLE II 
EFFICIENCY COMPARISONS OF DIFFERENT RBFS  

Type of 
basis 

function 

Length of 
groups 

(λ) 

Number of 
interpolation 

points 

Optimized 
shape 

parameter 

Interpolation 
relative 

error 
0.5 64 2.80 0.00426 
1.0 125 2.40 0.0140 
1.5 343 1.50 0.00434 
2.0 512 1.40 0.00827 

 
 

GA RBF 

2.5 729 1.30 0.0132 
0.5 64 1.00 0.00618 
1.0 216 1.60 0.00362 
1.5 343 1.70 0.00841 
2.0 512 1.90 0.0154 

 
 

IQ RBF 

2.5 1000 2.60 0.00837 
0.5 64 0.90 0.00643 
1.0 216 1.50 0.00379 
1.5 343 1.70 0.00862 
2.0 512 1.80 0.0160 

 
 

IMQ 
RBF 

2.5 1000 2.50 0.00870 
0.5 64 0.70 0.00725 
1.0 216 1.30 0.00422 
1.5 343 1.50 0.00961 
2.0 512 1.60 0.0175 

 
 

MQ RBF 

2.5 1000 2.20 0.00969 
 

TABLE III 
EFFICIENCY COMPARISONS OF DIFFERENT RBFS WITH NEAR-

SURFACE INTERPOLATION SCHEME 
Type of 

basis 
function

Length of 
groups 

(λ) 

Number of 
interpolation 

points 

Optimized 
shape 

parameter

Interpolation 
relative 

error 
0.5 43 2.90 0.00468 
1.0 73 2.30 0.0116 
1.5 145 1.40 0.0131 
2.0 251 1.20 0.0188 
2.5 371 1.20 0.0167 
3.0 515 1.10 0.0144 

 
 
 

GA RBF

4.0 885 1.00 0.0200 
0.5 43 1.20 0.0119 
1.0 106 1.60 0.0124 
1.5 184 2.30 0.0133 
2.0 304 2.50 0.0190 
2.5 427 2.40 0.0186 
3.0 609 2.30 0.0179 

 
 
 

IQ RBF

4.0 992 2.20 0.0197 
0.5 43 1.00 0.0127 
1.0 106 1.50 0.0130 
1.5 184 2.30 0.0134 
2.0 304 2.30 0.0200 
2.5 427 2.10 0.0176 
3.0 609 2.00 0.0178 

 
 
 

IMQ 
RBF 

4.0 992 2.00 0.0203 
0.5 43 0.90 0.0146 
1.0 106 1.40 0.0145 
1.5 184 2.10 0.0149 
2.0 304 2.10 0.0221 
2.5 427 1.90 0.0185 
3.0 609 1.80 0.0191 

 
 
 

MQ RBF

4.0 992 1.60 0.0220 
 

and similar results can be observed for other electrical sizes. 
The interpolation point numbers of the proposed scheme are 
about 251, which vary slightly for different groups. Although 
the surface distributions in 8 groups are different, the same 
shape parameter can be adopted to satisfy the error threshold, 
which is very important for the proposed scheme to be 
employed to build a fast solver. 
 

IV. CONCLUSION 

In this paper, a near-surface interpolation scheme is 
presented based on the radial basis functions, which can 
reduce the interpolation points significantly. The interpolation 
efficiencies of the proposed and Tartan grid schemes are 
compared with different RBFs. Numerical results show that 
the performance of the Gaussian RBF is better than the other 
three RBFs when they are used to approximate the free space 
Green’s function. The presented interpolation technique can 
be employed to construct a degenerate kernel for 
electromagnetic surface integral equations, for establishment 
of a fast solving algorithm. 
 



 
Figure 2. Variation of the number of interpolation points with groups of 

different wavelengths   

 
Figure 3. Average relative error versus the shape parameter c 
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