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Abstract—Exponential chaotic tabu search is an effec-
tive method for solving combinatorial optimization prob-
lems. Several modifications such as synchronous updating
of the neuronal states has been introduced to try to take
advantage of parallel processing in analog-digital hybrid
hardware systems. Exponential chaotic tabu search often
involves a 2-opt exchange. However, multiple neurons may
fire during synchronous update, which prevents the unique
determination of the target for 2-opt exchange. To over-
come this problem, several neuron selection methods have
been proposed, in which neurons are sorted according to
the values of their internal states, but these are computa-
tionally intensive. These methods are also not suited to
a quick and compact hardware implementation because of
complicated parameter settings and physical restrictions in
hardware devices.

In this paper, we propose a simplified synchronous ex-
ponential chaotic tabu search algorithm which is suitable
for analog-digital hybrid parallel hardware implementa-
tion. First, we modify the chaotic neuron model. Sec-
ond, we exclude global couplings between chaotic neurons,
which impose a heavy hardware burden. Finally, we take
into account all the possible restrictions and properties of
hardware systems. Furthermore, we can optimize the per-
formance simply by adjusting the external threshold value
of the neurons. We confirm the efficiency of the proposed
method for quadratic assignment problems through numer-
ical simulations.

1. Introduction

Chaotic tabu search algorithms [1] implemented using
chaotic neural networks are an effective method for solving
quadratic assignment problems (QAPs), and hardware im-
plementations are substantially faster than software imple-
mentations, allowing large-scale QAPs to be solved within
reasonable time frames. A synchronous updating algo-
rithm for a hardware implementation that simultaneously
updates all neuronal states has been proposed [2]. How-
ever, multiple neurons may fire simultaneously during syn-
chronous updates, preventing the 2-opt exchange from se-

lecting a single neuron. To solve this problem, several
neuron selection methods have been proposed, and the ef-
fectiveness of these methods has been confirmed by sim-
ulations [2–5]. The neuron selection methods proposed
in [2–4] sort neurons according to their internal state val-
ues. For a size-N QAP, the total number of neurons is N2,
so sorting all neuronal states is time-consuming when N
is large, which reduces the improvement brought by hard-
ware speed. Moreover, high-precision (meaning large and
expensive) hardware is needed to detect the infinitesimal
differences among neuronal states. Therefore, in [5], a neu-
ron selection method which does not rely on neuronal state
sorting was proposed. However, this synchronous expo-
nential chaotic tabu search algorithm is still not suitable for
hardware implementation because of hardware restrictions.

In this paper, we propose an improved synchronous ex-
ponential chaotic tabu search algorithm for quadratic as-
signment problems which is suitable for hardware imple-
mentation. First, we modify the chaotic neuron model used
in the synchronous exponential chaotic tabu search. Next,
we remove global couplings among neurons, which prevent
the realization of large-scale hardware-based tabu search
systems. In addition, we can easily optimize the perfor-
mance of the system by adjusting the threshold values ap-
plied externally to the neurons. Numerical simulations con-
firm the effectiveness of the proposed method, and show
that performance is improved by increasing the number of
iterations.

2. Quadratic Assignment Problem (QAP)

A QAP of size N consists of N locations and N units. An
N × N distance matrix denotes distances between pairs of
locations, and an N × N flow matrix describes mutual rela-
tions among units. A QAP is defined so that we need to find
an assignment of the units to the locations that minimizes
the cost function F(p) given by

F(p) =
N∑

i=1

N∑
j=1

ai jbp(i)p( j), (1)
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where p is a permutation of N elements given by Eq. (2)
that expresses a feasible solution, ai j is the distance be-
tween locations i and j, p(i) represents the ith element of
permutation p, and bp(i)p( j) is the flow between units p(i)
and p( j).

index : 1 , 2 , · · · , i , · · · , N

p : {p(1), p(2), · · · , p(i), · · · , p(N)}. (2)

3. Synchronous exponential chaotic tabu search algo-
rithm

Improved chaotic tabu search algorithms suitable for
hardware implementation were proposed in [2–4]. These
improved algorithms, referred to as synchronous updating
algorithms in this paper, simultaneously update the states
of all neurons.

The (i, j)th neuron in an N×N neural network used in the
synchronous updating algorithm is described as follows.

ξi j(t + 1) = β(F p
1 (t) − F p

i j (t)), (3)
ηi j(t + 1) = k f ηi j(t) − αηYp( j)q(i)(t) + R, (4)
ζi j(t + 1) = krζi j(t) − αζyi j(t) + R, (5)
xi j(t + 1) = ξi j(t + 1) + ηi j(t + 1) + ζi j(t + 1), (6)
yi j(t + 1) = f (xi j(t + 1)), (7)

f (x) =
1

1 + exp(− x
ϵ
)
, (8)

where F p
1 (t) is an initial objective function at time t, F p

i j (t)
is the objective function when element i is assigned to the
jth index of p, ξi j(t) is the gain when the ith element is
assigned to the jth index, ηi j(t) is the tabu effect for as-
signment (p( j), q(i)), ζi j(t) is the tabu effect for assignment
(i, j), xi j(t) is the internal state of the (i, j)th neuron, yi j(t)
is the output of the (i, j)th neuron, β is a scaling parameter
for the gain, R is an external bias, kr and k f are decay pa-
rameters of the tabu effect, α is a scaling parameter for the
tabu effect, Yp( j)q(i)(t) is 1 when p( j) is assigned to index
q(i) and 0 otherwise, f (·) is a nonlinear output function,
and ϵ is the gain parameter of f (·).

4. Neuron selection method for synchronous updates

A neuron selection method for determining the target of
2-opt exchange was proposed in [2]. The algorithm (abbre-
viated as MT-A) is defined as follows.

a) The internal states of all neurons in the network are up-
dated simultaneously.

b) Neurons which have fired are sorted according to the
values of xi j(t) in descending order. The first U neu-
rons are selected, where U is a user-specified parame-
ter.

c) The current permutation pcurrent is tentatively updated by
using each of the selected neurons. For the kth neuron
in the list we denote the resulting tentative permuta-
tion by pk. We also calculate the cost F(pk).

d) In step c) we obtain U different costs (F(p1), F(p2),. . .,
F(pU)) corresponding to U tentative permutations (p1,
p2,. . ., pU , respectively). The neuron that incurs the
smallest cost is chosen and the current permutation
pcurrent is definitively updated by using that neuron.

As shown above, MT-A uniquely selects the target neu-
ron by comparing the internal state values of U neurons.
However, the computational load increases with the num-
ber of neurons to be sorted. In addition, high-precision cir-
cuits are required to detect small differences between inter-
nal state values.

5. Improved synchronous exponential chaotic tabu
search algorithm

Neuron selection methods other than MT-A have been
proposed [2–4]; however, the settings of many parameters
are difficult to determine because of the complexity of the
algorithms. In addition, all previously proposed neuron se-
lection methods rely on sorting the neurons according to
their internal state values, which imposes a heavy load on
the hardware. With this in mind, we modified MT-A to
eliminate the need for sorting. Instead the modified algo-
rithm makes a random selection of U neurons from neu-
rons whose internal state values exceed a certain threshold
Vre f [5]. However, even with this modification, it is still
difficult to find optimal values for the parameters.

To improve our modified version of MT-A, we make sev-
eral further alterations. First, we introduce a threshold θ in
place of the reference Vre f . By adjusting θ, we can easily
control the firing rate of the neurons in the neuron selection
method [5]. The resulting chaotic neuron model is given
by

ξi j(t + 1) = β(F p
1 (t) − F p

i j (t)), (9)
ηi j(t + 1) = k f ηi j(t) − αηYp( j)q(i)(t) + (1 − k f )θ,

(10)
ζi j(t + 1) = krζi j(t) − αζyi j(t) + (1 − kr)θ, (11)
xi j(t + 1) = ξi j(t + 1) + ηi j(t + 1) + ζi j(t + 1), (12)
yi j(t + 1) = f (xi j(t + 1)), (13)

f (x) =
1

1 + exp(− x
ϵ
)
, (14)

Yp( j)q(i) =

{
1 (yp( j)q(i) > 0.5),
0 (yp( j)q(i) ≤ 0.5). (15)

Since we can control the firing rate of neurons by adjust-
ing θ, it is possible to optimize the system performance for
many different parameter settings.

Equation (10) includes global couplings among neurons
in the form of Yp( j)q(i), which impose a large load on the
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hardware. As the 2nd improvement, we completely omit
the ηi j(t) terms (Eq. (10)) to alleviate this load. The result-
ing chaotic neuron model is given by

ξi j(t + 1) = β(F p
1 (t) − F p

i j (t)), (16)
ζi j(t + 1) = krζi j(t) − αζyi j(t) + (1 − kr)θ, (17)
xi j(t + 1) = ξi j(t + 1) + ζi j(t + 1), (18)
yi j(t + 1) = f (xi j(t + 1)), (19)

f (x) =
1

1 + exp(− x
ϵ
)
. (20)

Third, we incorporate the hardware characteristics into
the neuron model by introducing the following piecewise
linear functions in the internal states of the neuron model.

ξi j(t) =


1 (1 ≤ ξi j(t)),
ξi j(t) (−1 < ξi j(t) < 1),
−1 (−1 ≥ ξi j(t)),

(21)

ζi j(t) =


1 (1 ≤ ζi j(t)),
ζi j(t) (−1 < ζi j(t) < 1),
−1 (−1 ≥ ζi j(t)),

(22)

xi j(t) =


1 (1 ≤ xi j(t)),
xi j(t) (−1 < xi j(t) < 1),
−1 (−1 ≥ xi j(t)).

(23)

Fourth, to eliminate the need for sorting, we randomly
reassign neuron numbers in the neural network. Then, we
select U neurons that have fired from a block of 50 succes-
sive neurons in the randomized chaotic neural network. For
the 2-opt exchange, we select from among these U neurons
the neuron that gives the minimum cost.

Finally, we reselect the neuron block in each iteration by
sequentially sliding the block by W neurons, where W is a
parameter.

6. Numerical simulations

We conducted simulations using the neuron model given
in Eqs. (16) to (23) for the Kra30a/b and the Lipa50a/b
benchmark problems [6] with U = 5. In the simulations,
we used the GAP performance measure:

GAP =
∑TR

n=1 EMn

TR
× 100 [%], (24)

where TR is the total number of trials, and EMn is the gap
between the optimal solution and the best solution obtained
in the nth trial.

We used a fixed parameter set; αζ = 0.3, β = 0.5, and
kr = 0.3. In addition, we adjusted the value of θ so that
the average firing rate of the chaotic neural network during
one trial was about 10%. Random initial permutations were
used for each trial and we varied the number of iterations
in a trial from 1000 to 100000 for each problem. The per-
formance measure, GAP, was calculated with TR = 100
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Figure 1: GAP for various iterations/trial for Kra30a.
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Figure 2: GAP for various iterations/trial for Kra30b.

and U = 5. We compared the results of our proposed
method with the results obtained using the existing MT-A
approach.

7. Simulation results

Figures 1 to 4 show that the value of GAP for the pro-
posed method decreases as the number of iterations per trial
is increased. In Fig. 1, 2 and 4, the proposed method sur-
passes MT-A for a large number of iterations per trial. In
Fig. 3, MT-A is still better than the proposed method when
the number of iterations per trial is less than 100000.

However, we could expect that the proposed method will
finally exceed MT-A if we further increase the number of
iterations per trial, which would be feasible with a fast
hardware system. In addition, we can confirm that the pro-
posed method gives good performance without parameter
tuning. From these results, we can conclude that the pro-
posed method is an effective method for solving QAPs us-
ing an analog-digital hybrid parallel hardware system.
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Figure 3: GAP for various iterations/trial for Lipa50a.
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Figure 4: GAP for various iterations/trial for Lipa50b.

8. Conclusion

In this paper, we have simplified the algorithm for syn-
chronous exponential chaotic tabu search for use with an
analog-digital hybrid parallel hardware system. By numer-
ical simulation, we confirmed that the proposed method ex-
hibits good performance which is comparable with that of
the conventional method. We have also proposed a way of
incorporating features of the hardware into the algorithm
to speed up the implementation. In the future, we plan to
build a prototype analog-digital hybrid hardware system to
implement the proposed synchronous exponential chaotic
tabu search.
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