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Abstract—
To establish reliable communication between end users,

alleviation of the congestion of packets in the communica-
tion networks is the most important problem. As one of the
effective routing methods for reliable communication, we
have proposed a routing method with chaotic neurodynam-
ics, and another routing method with memory information.
For recent works on the routing packets, a packet generat-
ing rate is used to evaluate the routing method for the com-
munication networks. Thus, we evaluate the effectiveness
of the routing method with the memory information using
the packet generating rate in this paper. By using memory
information effectively, packets are spread into the com-
munication networks, achieving a higher performance than
the conventional routing method for the complex network
topology.

1. Introduction

To securely communicate between end users in the com-
munication networks, alleviation of packet congestion is
strongly desired. It has been shown that the shortest path
protocol commonly employed by communication networks
is facing serious challenge if the data volume continues to
increase[1]. Specifically, the shortest path protocol trans-
mits data using only the distance information of the com-
munication network, and the routers where a large number
of shortest paths go through are easily congested. Thus, it
is imperative to enhance the transmission strategy to ensure
reliable communication through the network. In this con-
nection, an understanding of the data flow dynamics of the
packets would be necessary.

To improve the capability of the network in carrying
a large volume of data traffic, we need effective routing
strategies which can reduce drastically the congestion of
the communication network. Recent works in the devel-
opment of routing strategies have evolved along two basic
ideas. The first one is the selection of paths for transmitting
packets based on only local information of the communi-
cation network such as degree information [2, 3]. The sec-
ond idea is to utilize global information such as the short-
est distance information of the communication network.

For example, Horiguchi et al.[4] proposed a routing strat-
egy employing mutual connected neural networks. This
method was further improved by incorporation of stochas-
tic effects[5]. To alleviate the packet congestion, one of
the possible strategies is to prohibit the transmission of the
packets to an adjacent node to which the packets just have
been transmitted for a while. From this view point, we have
already proposed a routing strategy with chaotic neurody-
namics [6, 7, 8, 9, 10].

Incidentally, as for solving the combinatorial optimiza-
tion problem, chaotic neurodynamics exhibits higher abil-
ity to solve the various combinatorial optimization prob-
lems, such as the traveling salesman problems (TSP)[11],
the quadratic assignment problems (QAP)[12], the mo-
tif extraction problems (MEP)[13] and the vehicle rout-
ing problems (VRP) [14, 15]. These strategies use the
chaotic dynamics of a chaotic neural network[16] to escape
from undesirable local minima. Then, the performance of
the strategies becomes high. As one of them, the chaotic
routing strategy[6]-[10] is an optimization method for the
packet routing problems on the communication networks.

In these chaotic routing strategy[6, 7], a refractory
effect, which is an important characteristic in nerve
membrane[16] and produces the chaotic neurodynamics
plays a key role: it memorizes a past routing history.
By the refractory effect or the past routing history, the
chaotic routing strategy shows high performance for sev-
eral types of complex network topologies such as the small-
world network and the scale-free network. In addition the
method[6, 7] is improved by introducing the waiting time
information[8, 9, 10]. Then, we also confirmed that the im-
proved chaotic routing strategy has high performance for
the various kinds of the complex networks.

If we apply the chaotic routing strategy[6]-[10] to the
real communication networks, it is much important to clar-
ify the effectiveness of the routing method for more real-
istic communication networks. From a view point of real-
istic application of the chaotic routing strategy, we evalu-
ate the chaotic routing strategy for the scale-free networks
with tunable clustering[18] in this paper. From the obtained
results, the proposed chaotic routing strategy avoids the
packet congestion as compared to the conventional routing
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strategies.

2. Realization of A Routing Strategy with Chaotic Neu-
ral Networks

We explain how to construct the chaotic routing strategy.
First of all, let us start with constructing a model communi-
cation network. The model communication network hasN
nodes. Theith node hasNi adjacent nodes(i = 1, . . . , N).
Then, we assign a chaotic neural network to each node.
That is, theith node has its own chaotic neural network
which consists ofNi neurons, and theseNi neurons corre-
spond toNi adjacent nodes. The firing of theijth neuron
(j = 1, 2, . . . , Ni) encodes the transmission of a packet
from theith node to thejth adjacent node.

The chaotic neural network in each node operates to min-
imize path distance of the transmitting packet from theith
node to its destination, To realize this routing strategy, the
internal state of theijth neuron in the chaotic neural net-
work is defined as:

ξij(t + 1) = β

{

H

(

1 −
dij + djg(pi(t))

∑Ni

k=1(dik + dkg(pi(t)))

)

+ (1 − H)

(

1 −
qj(t)

∑Ni

k=1 qk(t)

)}

, (1)

where dij is a static distance from theith node to its
jth adjacent node;pi(t) is a transmitted packet of theith
node at thetth iteration;g(pi(t)) is a destination ofpi(t);
djg(pi(t)) is a dynamic distance from thejth adjacent node
to g(pi(t)), that is,djg(pi(t)) depends ong(pi(t)); β > 0
is a control parameter;qj(t) is the number of accumulated
packets at thejth adjacent node at thetth iteration;H de-
cides priority of the first term and the second term.

If the jth adjacent node is the closest tog(pi(t)) and has
the small number of the stored packets,ξij(t + 1) takes a
large value. The chaotic routing strategy[6]-[7] calculates
the path distance of a packets using only the first term of
Eq.(1). The second term of Eq.(1) expresses the accumu-
lated number of packets at thejth adjacent node called the
waiting time. By adding the waiting time, each node selects
the adjacent node more efficiently and flexibly.

Then, we assign the refractory effect[16] to each neuron.
The refractory effect is one of the essential characteristics
of a real neuron: a neuron which has just fired hardly fires
for a while. In our routing strategy, the refractory effect
plays a key role, because it is used as a memory informa-
tion. Namely, each node can memorize a past routing his-
tory using the refractory effect, then, an adjacent node to
which many packets have been transmitted is not selected
as a transmitted node of the packets for a while. The re-
fractory effect is described as follows:

ζij(t + 1) = −α
t

∑

d=0

kd
rxij(t − d) + θ, (2)

whereα > 0 is a control parameter of the refractoriness;
0 < kr < 1 is a decay parameter of the refractoriness;
xij(t) is the output of theijth neuron at thetth iteration
that will be defined in Eq.(4);θ is a threshold.

Finally, a mutual connection is assigned to each neuron.
The mutual connection controls firing rates of the neurons,
because too frequent firing often leads to a fatal situation
of the packet routing. The mutual connection is defined as
follows:

ηij(t + 1) = W − W

Ni
∑

j=1

xij(t), (3)

whereW > 0 is a control parameter andNi is the number
of adjacent nodes at theith node.

Then, the output of theijth neuron is defined as follows:

xij(t + 1) = f{ξij(t + 1) + ζij(t + 1)+ ηij(t + 1)}, (4)

wheref(y) = 1/(1 + e−y/ǫ). In our routing strategy, if
xij(t + 1) > 1/2, theijth neuron fires; a packet at theith
node is transmitted to thejth adjacent node. If the outputs
of multiple neurons exceed1/2, we defined that the neuron
which has the largest output only fires.

3. Performance Evaluation

To evaluate the performance of the improved chaotic
routing strategy, we compared it with two kinds of the con-
ventional routing strategies. The first one is the shortest
path routing strategy (SP), which is commonly employed
by communication networks. The second one is a gain
routing strategy. The gain routing strategy uses only Eq.(1)
for determination of the optimum adjacent node. Differ-
ence between the routing strategy proposed by P.Echenique
et al.[1, 19] and the gain routing strategy is that the Eq.(1)
is normalized in the case of the gain routing strategy and
the routing strategy[1, 19] uses direct information.

Numerical simulations are conducted as follows. First,
packets are created from randomly selected sources and
destinations. Then, at every node, an optimal adjacent node
was selected using Eqs.(1)–(4), and the packets are simul-
taneously transmitted to their destinations. We set the pa-
rameters in Eqs.(1)–(4) as follows:β = 5.0, H = 0.9,
α = 0.4, kr = 0.8, θ = 0.5, W = 0.01, andǫ = 0.05. We
repeat the node selection and packet transmission,I, for
I = 500. We generated the packets based on the density of
the packet in the communication networks, and evaluated
the routing strategies. Further, we conducted30 simula-
tions to average the results.

To evaluate the performance of the routing strategies, we
use the following metrics.

1. Density of the packets (D):

D = p · N · Qmax (5)
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whereQmax is the maximum sizes of the buffer at
each node. We set theQmax to 2, 000 in these sim-
ulations. p(0 < p ≤ 1) is the ratio of the generated
number of packets to the capacity of the communica-
tion network. Ifp increases, a large number of packets
are generated at each iteration.

2. Average arrival rate of the packets (A):

A =

∑T
t=1 Na(t)
∑T

t=1 D
(6)

whereNa(t) is the number of arriving packets at the
tth iteration.

We evaluate the performance of the routing strategies for
the scale-free networks with tunable clustering[18]. The
scale-free networks with tunable clustering are generated
as follows. First, we construct a network which hasm0

nodes and no links. Then, we add a node withm links at
every step by the preferential attachment or triad formation.
In the case of the preferential attachment,m links of the
newly added node are connected to the node that already
exists in the networks with probability:

Π(ki) = ki/

N
∑

j=1

kj , (7)

whereki is the degree of theith node(i = 1, . . . , N), and
N is the number of the nodes at the current iteration.

Further, one more link of the newly added node is con-
nected after preferential attachment in the case of the triad
formation. For example, if a nodev is connected to a
nodew by the preferential attachment defined by Eq.(7),
then, one more link of the nodev is connected to the ad-
jacent of the nodew. If all adjacent nodes ofw were
already connected to the nodev, the preferential attach-
ment is performed instead. When a nodev with m links
is added to the existing network, we first perform one
preferential attachment. Then, the triad formation is per-
formed using the probabilityPt, or the preferential attach-
ment is performed with the probability1 − Pt. By tuning
the selecting probability,Pt, we can construct the original
scale-free networks[20] or the ones with strong clustering
property[18].

Figure 1 shows the average arrival rate of the packets
(A) by the shortest path routing strategy (SP), the gain
routing strategy (Gain), and the chaotic routing strategy
(CS) for the scale-free networks with tunable parameter.
In these simulations, we set the number of nodes (N ) to
100. In Figs. 1 (a), (b) and (C), the proposed chaotic rout-
ing strategy (CS) shows higher arrival rate than the other
routing strategies for all the cases of the selecting probabil-
ities (Pt). In addition, if the selecting probability increases
(Fig. 1 (a)), namely, the scale-free networks have strong
clustering, we can see that the performance of all routing
strategies are decreased (Figs. 1(a) and (b)).

4. Conclusions

In this paper, we evaluate the performance of the routing
strategy with chaotic neurodynamics under realistic com-
munication networks. We evaluated the routing strategies
for the scale-free networks with tunable clustering. The nu-
merical simulations tell us that the chaotic routing strategy
has higher performance for Obtained results indicate that
the chaotic routing strategy has much possibility for appli-
cation in the real communication networks. To clarify the
effectiveness of the proposed routing strategy, we consider
to analyze the dynamic property in the networks using the
complex network theory in the future works.
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Figure 1: Relationship between the density of the packets (D) and an average arrival rate of the packets (A) for the
scale-free networks with tunable clustering, (a) the selection probability (Pt) is 0, (b) Pt is 3, and (c)Pt is 90.
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