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Abstract— For example, Horiguchi et al.[4] proposed a routing strat-

To establish reliable communication between end userggy employing mutual connected neural networks. This
alleviation of the congestion of packets in the communicanethod was further improved by incorporation of stochas-
tion networks is the most important problem. As one of théic effects[5]. To alleviate the packet congestion, one of
effective routing methods for reliable communication, wehe possible strategies is to prohibit the transmissiohef t
have proposed a routing method with chaotic neurodynarpackets to an adjacent node to which the packets just have
ics, and another routing method with memory informationbeen transmitted for a while. From this view point, we have
For recent works on the routing packets, a packet generatready proposed a routing strategy with chaotic neurody-
ing rate is used to evaluate the routing method for the comamics [6, 7, 8, 9, 10].
munication networks. Thus, we evaluate the effectiveness|ncidentally, as for solving the combinatorial optimiza-
of the routing method with the memory information usingtion problem, chaotic neurodynamics exhibits higher abil-
the packet generating rate in this paper. By using memorty to solve the various combinatorial optimization prob-
information effectively, packets are spread into the comems, such as the traveling salesman problems (TSP)[11],
munication networks, achieving a higher performance thahe quadratic assignment problems (QAP)[12], the mo-
the conventional routing method for the complex networlgf extraction problems (MEP)[13] and the vehicle rout-
topology. ing problems (VRP) [14, 15]. These strategies use the
chaotic dynamics of a chaotic neural network[16] to escape
from undesirable local minima. Then, the performance of
the strategies becomes high. As one of them, the chaotic

To securely communicate between end users in the cofuting strategy[6]-[10] is an optimization method for the
munication networks, alleviation of packet congestion i§aCket routing problems on the communication networks.
strongly desired. It has been shown that the shortest pathln these chaotic routing strategy[6, 7], a refractory
protocol commonly employed by communication network€ffect, which is an important characteristic in nerve
is facing serious challenge if the data volume continues t@embrane[16] and produces the chaotic neurodynamics
increase[1]. Specifically, the shortest path protocolgranplays a key role: it memorizes a past routing history.
mits data using only the distance information of the comBY the refractory effect or the past routing history, the
munication network, and the routers where a large numbehaotic routing strategy shows high performance for sev-
of shortest paths go through are easily congested. Thusgfi@l types of complex network topologies such as the small-
is imperative to enhance the transmission strategy to ensyorld network and the scale-free network. In addition the
reliable communication through the network. In this conmethod(6, 7] is improved by introducing the waiting time
nection, an understanding of the data flow dynamics of thgformation[8, 9, 10]. Then, we also confirmed that the im-
packets would be necessary. proved chaotic routing strategy has high performance for

To improve the capability of the network in carryingthe various kinds of the complex networks.

a large volume of data traffic, we need effective routing If we apply the chaotic routing strategy[6]-[10] to the
strategies which can reduce drastically the congestion oféal communication networks, it is much important to clar-
the communication network. Recent works in the devely the effectiveness of the routing method for more real-
opment of routing strategies have evolved along two basistic communication networks. From a view point of real-
ideas. The first one is the selection of paths for transmgittinistic application of the chaotic routing strategy, we evalu
packets based on only local information of the communiate the chaotic routing strategy for the scale-free neta/ork
cation network such as degree information [2, 3]. The seavith tunable clustering[18] in this paper. From the obtdine
ond idea is to utilize global information such as the shortresults, the proposed chaotic routing strategy avoids the
est distance information of the communication networkpacket congestion as compared to the conventional routing

1. Introduction
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strategies. wherea > 0 is a control parameter of the refractoriness;
0 < k. < 1is a decay parameter of the refractoriness;
2. Realization of A Routing Strategy with ChaoticNeu- %5 (t) IS the output of thejth neuron at theth iteration
ral Networks that will be defined in Eq.(4) is a threshold.
Finally, a mutual connection is assigned to each neuron.
We explain how to construct the chaotic routing strategyl he mutual connection controls firing rates of the neurons,
First of all, let us start with constructing a model communibecause too frequent firing often leads to a fatal situation
cation network. The model communication network Aas of the packet routing. The mutual connection is defined as
nodes. Théth node hasv; adjacentnode§ = 1,..., N). follows:
Then, we assign a chaotic neural network to each node. N
That is, theith node has its own chaotic neural network -
which consists ofV; neurons, and thes¥; neurons corre- mijt+1) =W -Ww qu (), ®3)
spond toN; adjacent nodes. The firing of thig¢th neuron =1
(j = 1,2,...,N;) encodes the transmission of a packewhereWW > 0 is a control parameter any; is the number
from theith node to theth adjacent node. of adjacent nodes at thigh node.
The chaotic neural network in each node operates to min- Then, the output of thgjth neuron is defined as follows:
imize path distance of the transmitting packet from e
node to its destination, To realize this routing stratelyg, t
internal state of thejth neuron in the chaotic neural net- ij (t +1) = f{&; (¢ +1) + G (t+ 1) +ni(t+ 1)}, (4)

k is defi :
work is defined as wheref(y) = 1/(1 + e~%/€). In our routing strategy, if

zi;(t + 1) > 1/2, theijth neuron fires; a packet at tlin
dij + djg(pi (1)) > node is transmitted to thgh adjacent node. If the outputs
N : ,
S (dik + digtpi 1)) of multiple neurons exceeld 2, we defined that the neuron

() which has the largest output only fires.
ra-m(i- 20w
Zk:l gk (t)

where d,; is a static distance from théh node to its
jth adjacent nodep;(¢) is a transmitted packet of thigh
node at theth iteration;g(p;(¢)) is a destination op;(t);
djg(p: (+)) 1S @ dynamic distance from thgh adjacent node
to g(pi(t)), that is,d;4(,, +)) depends oy(p;(t)); 6 > 0

is a control parametey; () is the number of accumulated
packets at thgth adjacent node at th¢h iteration; H de-
cides priority of the first term and the second term.

If the jth adjacent node is the closestyt@;(¢)) and has
the small number of the stored packeis(t + 1) takes a
large value. The chaotic routing strategy[6]-[7] calcetat ) ; . )
the path distance of a packets using only the first term 8'?e routing strategy[1, 19] uses directinformation.

Eq.(1). The second term of Eq.(1) expresses the aCcumu_Numerical simulations are conducted as follows. First,
lated number of packets at thigh adjacent node called the packets are created from randomly selected sources and

waiting time. By adding the waiting time, each node select estinations. Th_en, atevery node, an optimal adjacent r_10de
the adjacent node more efficiently and flexibly. was selected using Egs.(1)—(4), and the packets are simul-

Then, we assign the refractory effect[16] to each neuroﬁz_ineously transmitted to their destinations. We set the pa-

The refractory effect is one of the essential charactesisti rameters in Eqgs.(1)-(4) as followst = 5.0, H = 0.9,

of a real neuron: a neuron which has just fired hardly fire§ — 0-t4t,hkr ~ 8'8’ 0 IZ ?5 w j 0'01k’ z?ntde — 0.'03' We
for a while. In our routing strategy, the refractory effect P! (€ NOdE Selection and packet transmis iofor

plays a key role, because it is used as a memory informg-_ 5OOI‘(VY? gtehnerated the_ pat<_:kets btaseﬁ on thde der;smt/ (()jf
tion. Namely, each node can memorize a past routing hi 1€ packet in the communication hetworks, and evaluate

tory using the refractory effect, then, an adjacent node {he routing strategies. Further, we conducsedsimula-

which many packets have been transmitted is not selectga_?s to average the results. ) )
as a transmitted node of the packets for a while. The re- 0 evaluate the performance of the routing strategies, we

fractory effect is described as follows: use the following metrics.

ij(t+1) = B{H(l -

3. Performance Evaluation

To evaluate the performance of the improved chaotic
routing strategy, we compared it with two kinds of the con-
ventional routing strategies. The first one is the shortest
path routing strategy (SP), which is commonly employed
by communication networks. The second one is a gain
routing strategy. The gain routing strategy uses only Bq.(1
for determination of the optimum adjacent node. Differ-
ence between the routing strategy proposed by P.Echenique
et al.[1, 19] and the gain routing strategy is that the Eq.(1)
is normalized in the case of the gain routing strategy and

1. Density of the packetd)):

t
- _ Ao (4 _
Cij(t+1) a ;:o kdaii(t —d) + 0, (2) D=p-N-Quus (5)
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where Q... IS the maximum sizes of the buffer at4. Conclusions

each node. We set th@,,.. to 2,000 in these sim- ) ]
ulations. p(0 < p < 1) is the ratio of the generated [N this paper, we evaluate the performance of the routing
number of packets to the capacity of the communicéstrategy with chaotic neurodynamics under realistic com-
tion network. Ifp increases, a large number of packetgnunication networks. We evaluated the routing strategies

are generated at each iteration. for the scale-free networks with tunable clustering. The nu
merical simulations tell us that the chaotic routing stygite
2. Average arrival rate of the packets)( has higher performance for Obtained results indicate that
T the chaotic routing strategy has much possibility for appli
A= 21 Na(t) (6) cation in the real communication networks. To clarify the
Zthl D effectiveness of the proposed routing strategy, we conside

to analyze the dynamic property in the networks using the

where N, (t) is the number of arriving packets at thecomplex network theory in the future works.
tth iteration.
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