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Abstract—The quadratic assignment problem (QAP) is
one of the NP-hard combinatorial optimization problems.
Then, it is required to develop an effective approxima-
tion algorithm for finding near optimal solutions in real-
istic time. In this paper, we proposed a local search algo-
rithm for solving QAP by introducing searching property
of the Lin-Kernighan algorithm. We also applied chaotic
dynamics to the proposed local search algorithm to escape
from undesirable local minima. To evaluate solving per-
formance of the proposed algorithm, we compared the per-
formance of the proposed algorithm with those of the con-
ventional algorithms. As a result, the solving performance
of the proposed algorithm with chaotic dynamics exhibits
smaller gaps from optimal solutions than the conventional
algorithms.

1. Introduction

In our daily life, we are often asked to solve combinato-
rial optimization problems, such as drilling problem, VLSI
design, scheduling, and delivery plan problem. It is impor-
tant to solve these combinatorial optimization problems in
terms of reduction of the cost. However, we cannot usually
get an optimal solution because these combinatorial opti-
mization problems belong to a class of NP-hard. Thus, it is
necessary to develop effective approximate algorithms.

The quadratic assignment problem (QAP)[1] is one of
the NP-hard problems. It formulates various real prob-
lems. The purpose of solving QAP is, for example, to find
an assignment of facilities to each city that makes a total
cost minimum when the relation of facilities and relation
of cities are given.

On the other hand, several approximate algorithms for
solving traveling salesman problem (TSP), which is a spe-
cial case of QAP, have already been proposed, such as 2-
opt, Or-opt and Lin-Kernighan (LK) algorithm[2]. Among
them, the LK algorithm is the most powerful algorithm for
finding a superior solution of TSP. The LK algorithm con-
trols the λ-opt algorithm. It realizes an effective search by
changing λ adaptively in its search process.

In this paper, at first, we propose a new algorithm with a
searching property of the LK algorithm; exchange elements
are adaptively decided. Then we conducted numerical ex-

periments to compare the performance of the proposed lo-
cal search algorithm with the conventional algorithms by
using the benchmark problems of QAPLIB[1]. As a result,
the proposed local search algorithm found superior solu-
tions with less calculation cost than the λ-opt algorithm.

In this paper, we also introduce an algorithm of a meta-
heuristic strategy to escape from undesirable local minima,
because the proposed algorithm for QAP has a risk of be-
ing trapped at local minima because the searching dynam-
ics is steepest descent. It has already been reported that
metaheuristic strategy with chaotic dynamics is effective
for solving combinatorial optimization problem[3, 4, 5, 6].
Therefore, it is very natural to expect that chaotic dynamics
can realize an effective strategy to escape from local min-
ima. Then, we also introduce chaotic dynamics into the
proposed algorithm to escape from undesirable local min-
ima.

2. Quadratic Assignment Problems

The quadratic assignment problem (QAP) is a typical ex-
ample of an NP-hard combinatorial optimization problem.
It includes various combinatorial optimization problems as
a special case. In the QAP, when two n × n matrices, a dis-
tance matrix A = (ai j) and a flow matrix B = (bkl) are given,
we are asked to find an assignment p = {p(1), p(2), ..., p(n)}
that minimizes the objective function. It is the purpose of
QAP. Here, distance ai j means the distance between cities
i and j, the flow bkl means flow from the facility k to l. In
QAP, the objective function is defined as:

F(p) =
n∑

i=1

n∑
j=1

ai jbp(i)p( j). (1)

However, it is almost impossible to get an optimal so-
lution, because the number of assignments is n! for the n-
size QAP. It means that the number of possible solutions
increases exponentially. If we can develop a heuristic algo-
rithm, a superior solution can be provided in realistic time.
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2.1. Conventional local search algorithm

When a solution set is provided by transforming the
present solution p, we call it the neighborhood of p. The
local search for QAP is a repetitive operation to search p′
that satisfies F(p′) < F(p). Once a better solution p′ is
found, the present solution p is really updated to p′.

The λ-opt algorithm is the most typical heuristic algo-
rithm for searching better solution of QAP. We illustrate
the λ-opt algorithm as follows.

Step1 Facilities are assigned to cities randomly. Let us
describe the solution as p.

Step2 λ facilities are chosen from p, and are exchanged
each other. Let us describe a solution of the neigh-
borhood of p as p′. If p′ satisfies F(p′) < F(p), p is
updated to p′.

Step3 Step2 is repeated until the update of p stops.

Generally, the λ-opt algorithm with large λ′s can find
superior solutions because the number of candidate solu-
tions increases, when λ becomes large. However, if λ be-
comes large, calculation costs also increase exponentially.
It means that it is almost impossible to finish a search in
realistic time.

2.2. Move strategy

The λ-opt algorithm updates the solution p at Step2.
Here two possible update algorithms exist.

First admissible move strategy
The solution p is updated to p′ which is firstly found
that satisfies F(p′) < F(p) from the neighborhood of
a present solution.

Best admissible move strategy
The solution p is updated to p′ which has the mini-
mum cost from the neighborhood of a present solu-
tion.

In Fig.1, we show the results of the average gaps from
the optimal solution and the number of the searched so-
lution for these two strategies when the value of λ is
changed. The number of trials is 100. We used two in-
stances “Tai15a” and “Tai20a” from QAPLIB[1].

The solid lines express gaps provided as a result of
search, and the bars express the number of the searched
solutions. The dashed lines describe results of the first ad-
missible move strategy, and the solid lines describe results
of the best admissible move strategy.

As a result, the λ-opt algorithm found better solutions
by increasing λ. However, the number of searched solu-
tions increases exponentially. Although the best admissible
move strategy searches more solutions than the first admis-
sible move strategy, their obtained solutions are not signif-
icantly different.
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Figure 1: Average gaps from the optimal solution and
the number of the searched solutions for (a)Tai15a and
(b)Tai20a in case of applying the λ-opt (λ = 2, 3, 4) algo-
rithm with the first admissible move and the best admissible
more strategies.

3. Proposed algorithm

3.1. Approach

As shown in the previous section, the λ-opt algorithm
finds superior solutions by increasing λ. However, the best
admissible move strategy which enumerates the neighbor-
hood with a fixed number of exchange elements λ, is less
effective than the first admissible move strategy.

Therefore, in the proposed algorithm, we do not search
solutions provided by neighboring enumeration such as the
best admissible move strategy, but by exchanging elements
with changing the λ adaptively. It makes the solution search
process with a large number of exchange elements with less
calculation cost. It is implemented by deciding exchange
elements adaptively, which is a similar strategy as the LK
algorithm used for TSP.

3.2. Algorithm

We explain the proposed local search algorithm in the
following.

Step1 Facilities are assigned to cities randomly. Let us
describe the present solution as p.

Step2 Let us describe the best solution in the past search as
pbest. We choose the facility E1 which is the start point
of the exchange from the facilities fi(i = 1, 2, ..., n).
Then let d = 1.

Step3 The facility Ed+1 is chosen which reduces the cost
most when the facility is exchanged with Ed from fa-
cilities fi(i = 1, 2, ..., n) except facilities that has al-
ready been exchanged Ek(k = 1, 2, ..., d). Then, a new
solution p′ by exchanging Ed and Ed+1 is obtained.
Then d is increased by 1.

Step4 If F(p′) < F(pbest), pbest is updated to p′. If d = n,
go to Step5, otherwise return to Step3.

Step5 p is updated to pbest, and this iteration is finished.
Then, the procedure returns to Step2 and the search
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is repeated with selecting another facility as E1. If p
is not updated even if any facility is chosen as E1 at
Step2, the search is terminated.

3.3. Meta heuristics using chaotic neural network

It has been reported that a metaheuristic strategy with
chaotic dynamics is useful for solving combinatorial opti-
mization problems. Then, we also applied the metaheuris-
tic strategy with the chaotic neural network to the proposed
local search algorithm.

Chaotic neural network is a network constructed by
chaotic neurons[7]. The dynamics of the ith chaotic neuron
used in this paper are described by the following equations.

ξi(t + 1) = β∆i(t), (2)

ζi(t + 1) = −α
t∑

d=0

kd xi(t − d) + θ, (3)

ηi(t + 1) =


−wxµ(t) (if fi = Ed),
−wxν(t) (if fi = Ed+1),
0 (otherwise),

(4)

yi(t + 1) = ξi(t + 1) + ζi(t + 1) + ηi(t + 1), (5)

xi(t + 1) =

 1
1+exp(− yi(t+1)

ε )
(if fi = Ed or Ed+1),

0 (otherwise),
(6)

where β is the scaling parameter for the gain effect; k is
the decay parameter of refractoriness; α is the scaling pa-
rameter of refractoriness; w is a synaptic weight; θ is the
threshold of the chaotic neuron; ν is a index of firing neu-
ron at time t; µ is a index of firing neuron at time t + 1;
∆i(t) is the difference of the objective function; ξi(t + 1) ,
ζi(t+1) and ηi(t+1) are the internal states of the ith chaotic
neuron at time t + 1. The output of the ith chaotic neuron
is xi(t + 1). If yi(t + 1) = ξi(t + 1) + ζi(t + 1) + ηi(t + 1)
is the largest among all the neurons, the ith chaotic neuron
fires. By using chaotic dynamics of Eqs.(2)-(6), we modi-
fied the proposed algorithm. In the modified algorithm, we
used the chaotic neural network constructed by n chaotic
neurons for n-size problem.

In the proposed algorithm mentioned in section 3.2, we
choose the facility Ed+1 that makes the total cost minimum
by the exchange at Step3. On the other hand, in the follow-
ing algorithm, we choose the facility which is assigned to
a firing neuron at Step3.2. If the chaotic neuron once fires,
it becomes hard to fire for a while due to refractoriness.
Therefore if the facility is chosen as Ed, it becomes hard to
be chosen again for a while. Thus we avoid the same facil-
ity to be a target of the exchange repeatedly, and we search
the solution which has not been searched. The algorithm is
as follows.

Step1 Facilities are assigned to the cities randomly. Let us
describe the solution as p. Then we suppose t = 1,
ζi(1) = 0，ηi(1) = 0 for i = 1, 2, ..., n.

Step2 Let us describe the best solution in the past search
as pbest. The facility E1 is chosen as the start point

of the exchange from the facilities fi(i = 1, 2, ..., n).
Then let d = 1.

Step3.1 For any chaotic neurons not assigned to Ed, the
internal state ξi(t + 1) is updated by Eq.(2). In Eq.(2),
∆i(t) is improvement of the objective function by ex-
changing fi and Ed. Then, the total internal states
yi(t + 1) is updated by Eq.(5). Then d is increased
by one.

Step3.2 From fi(i = 1, 2, ..., n), the facility Ed+1 whose to-
tal internal states yi(t+1) of the assigned neuron is the
largest is chosen. Then, a new solution p′ by exchang-
ing Ed and Ed+1 is obtained.

Step3.3 Let ξµ(t+1) = ξν(t+1) where µ is the neuron index
assigned to Ed and ν is the neuron index assigned to
Ed+1. Then, yν(t + 1) is updated, and xi(t + 1) of all
neurons are updated.

Step4.1 Let t be increased by one. The internal states ξi(t+
1) and ζi(t+1) of all the neurons are updated by Eq.(2)
and Eq.(3).

Step4.2 If F(p′) < F(pbest), pbest is updated to p′. If d = n,
go to Step5, otherwise return to Step3.

Step5 The present solution p is updated to pbest, and this
iteration is terminated. Return to Step2, the new iter-
ation starts with selecting another facility as E1.

4. Numerical results

We evaluate performance of the proposed algorithm us-
ing benchmark problems of QAPLIB. For each instance,
different 100 initial solutions are prepared. We also com-
pared the performance of a random assignment, 2-opt, 3-
opt, the proposed local search algorithm and the proposed
local search algorithm with chaotic dynamics. Here, the
random assignment means that facilities are assigned ran-
domly. When the proposed algorithm with chaotic dynam-
ics is applied, solutions are improved by the proposed lo-
cal search algorithm without chaotic dynamics (section 3.2)
until the solution falls into local minima, then the solutions
are improved by the proposed algorithm with chaotic dy-
namics (section 3.3) until the solutions are not updated for
40n iterations. To evaluate the performance, we used aver-
age gaps. The gap is defined by the following equation.

gap(%) =
found solution − optimal solution

optimal solution
× 100. (7)

In the proposed local search algorithm with chaotic dy-
namics, the parameters are set to k = 0.75, α = 0.25,w =
0.25, β = 0.002, θ = 0 and ε = 0.

Table 1 shows the average gaps for the algorithms. For
all instances, the proposed local search algorithm can find
better solutions than the 3-opt algorithm. In addition, the
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proposed local search algorithm with chaotic dynamics can
find better solutions than that without chaotic dynamics.
This result shows that chaotic dynamics is effective for es-
caping from local minima.

To compare the performance of the algorithms, iti is also
important to evaluate the number of execution of the local
algorithm. Then we used the number of executions that the
algorithms tried to search solutions as a measure of the per-
formance evaluation. Here, the solutions search means the
number of calculating the objective function in the search-
ing process.

Table 2 shows the number of execution of each algo-
rithm. The results show that the proposed local search al-
gorithm and the proposed local search algorithm with the
chaotic dynamics searched more times than the 2-opt al-
gorithm but less than the 3-opt algorithm for large n-size
QAPs. Then the results indicate that proposed algorithms
could find better solutions efficiently.

Table 1: Results of average gaps. Bold faces indicate the
best result.

instance random 2-opt 3-opt proposed proposed+CNN

Lipa20a 7.1 2.8 2.6 2.4 2.3
Lipa20b 31.3 14.6 13.5 11.3 10.9
Lipa30a 4.8 2.0 1.9 1.7 1.7
Lipa30b 29.1 16.9 15.1 14.1 14.0
Lipa50a 3.1 1.3 1.2 1.1 1.1
Lipa50b 28.8 18.7 17.6 16.2 16.2
Tai60a 18.1 4.7 3.5 3.2 3.2
Tai60b 66.4 8.3 6.3 4.6 4.6
Tai100a 13.9 3.1 2.4 2.1 1.9
Tai100b 51.0 4.5 4.3 3.0 3.0

5. Conclusion

We proposed a new local search algorithm for solv-
ing QAP. The proposed local search algorithm decides ex-
change elements adaptively. As a result, the proposed lo-
cal search algorithm could effectively find better solutions.
Moreover, we can improve the performance of the pro-
posed local search algorithm by introducing chaotic dy-
namics.
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Table 2: The number of times that execute a solution
search.

instance 2-opt 3-opt proposed proposed+CNN

Lipa20a 2,129 9,490 9,764 14,260
Lipa20b 2,289 9,319 10,887 15,358
Lipa30a 7,595 35,261 33,683 48,229
Lipa30b 7,656 35,879 37,107 52,941
Lipa50a 35,341 282,685 183,550 257,467
Lipa50b 37,791 491,817 205,159 269,214
Tai60a 65,366 600,561 364,210 477,880
Tai60b 129,015 1,098,410 462,659 576,948
Tai100a 318,186 4,766,530 1,351,850 1,623,410
Tai100b 673,497 9,816,840 1,697,860 1,983,210
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