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Abstract—The quadratic assignment problem (QAP) is
one of famous combinatorial optimization problems which
belong to a class of NP-hard. To solve the QAP, a chaotic
search method which uses chaotic neural network has been
proposed. In the method, chaotic dynamics of the chaotic
neural network effectively controls to avoid the local min-
ima and to search optimal or near-optimal solutions. How-
ever, it is not so easy to generate feasible solutions from
the chaotic neural network, because an output of a chaotic
neuron takes an analog value. Thus, for obtaining good so-
lutions from the chaotic neural network, it is important to
develop a method that always generates a feasible solution
of the QAP. To generate a feasible solution of the QAP, we
have already proposed a firing decision method. In this pa-
per, to improve performances of the method, we investigate
what factors are essential to the firing decision method.

1. Introduction

The quadratic assignment problem (QAP) is one of fa-
mous combinatorial optimal problems [1]. The QAP is de-
scribed as follows: A set of N facilities, a set of N locations,
distance matrix D = (di j) between locations, and flow ma-
trix F = ( fmn) between facilities are given. Here, di j is the
distance between locations i and j, and fmn is the flow be-
tween the facilities m and n. In the QAP, every facility is
assigned to exactly one location and no location is assigned
more than one facility. The goal of the QAP is to find an
assignment of N facilities to N locations such that the sum
of the product between flows and distances is minimized.
The QAP is formulated as follows:

minimize
N∑

i=1

N∑
m=1

N∑
j=1

N∑
n=1

di j fmnximx jn (1)

subject to
N∑

m=1

xim = 1 (i = 1, 2, ...,N) (2)

N∑
i=1

xim = 1 (m = 1, 2, ...,N) (3)

xim ∈ {0, 1} (i,m = 1, 2, ...,N) (4)

where xim is decision variable. If facility i is assigned to lo-
cation m, xim = 1, otherwise, xim = 0. The QAP belongs to

a class ofNP-hard. Thus, it is required to develop effective
approximate algorithms for finding near-optimal solutions
in a reasonable time frame.

As an approximate algorithm, the Hopfield-Tank neu-
ral network (HNN) has already been proposed [2]. In the
method, a firing pattern of HNN represents a solution of
the QAP. If synaptic weights of HNN are set to appropri-
ate values, good solutions are obtained by the energy min-
imization principle. However, this method cannot always
show good performance because the states of the HNN get
stuck at local minima.

To avoid local minima, a method which uses a chaotic
neural network (CNN) [3] has already been proposed [4–
7]. In the method, chaotic dynamics of the CNN effectively
controls to avoid the local minima and to search optimal
or near-optimal solutions. For N-size QAP, N2 neurons ar-
ranged on an N×N grid are required, and then a state of the
CNN represents a solution of the QAP. If the imth chaotic
neuron fires, facility i is assigned to location m. However, it
is not so easy to generate feasible solutions from the CNN,
because an internal state of a chaotic neuron takes an ana-
log value. Thus, one of the most important issues in this
method is how to decide the firing pattern of the CNN, that
is, how to decide the feasible solutions from the CNN.

To generate the feasible solutions of the QAP, we have
already proposed a firing decision method by using internal
states of all the neurons. The method repeatedly sets fire
to the neuron whose internal state is the maximum value
among all neurons to satisfy the feasibility conditions of
the QAP. In this paper, to improve the performances of the
firing decision method, we investigate what factors are es-
sential to the firing decision method.

2. Chaotic Neural Network for Solving the QAP

As an approximate algorithm for solving the QAP, a
method which uses mutual connection chaotic neural net-
work (CNN) [3] has already been proposed [4–7]. The
CNN is constructed by chaotic neurons [3]. This neural
network model can qualitatively reproduce a chaotic dy-
namics observed in real neural membrane.

For solving the N-size QAP, N2 chaotic neurons are re-
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quired, and these are arranged on an N×N grid. An internal
state of the imth chaotic neuron for the QAP is defined as
follows:

yim(t + 1) = kryim(t) +
n∑

j=1

n∑
l=1

wim; jn f (y jn(t))

−α f (yim(t)) + θim(1 − kr),
(5)

where kr is a decay parameter of a refractory effect and α
is a strength parameter of a refractory effect. The chaotic
neurons are coupled each other with a synaptic connection
weight. wim; jn is the synaptic weight between the imth neu-
ron and the jnth neuron. θim is a threshold of the imth
chaotic neuron, and f is an output function of the chaotic
neuron. As an output function, a sigmoidal function is
used: f (y) = 1/(1 + exp(−y/ε)), where ε is a gradient pa-
rameter of the sigmoidal function.

For solving the QAP by the CNN, the objective function
of the QAP is newly defined as follows:

F(X) = A
N∑

i=1

 N∑
m=1

Xim − 1

2 + B
N∑

m=1

 N∑
i=1

Xim − 1

2
+

N∑
i=1

N∑
m=1

N∑
j=1

N∑
n=1

di j fmnXimX jn,

(6)

where A and B are positive constraints. X = (Xim) is N × N
matrix and represents solutions of the QAP generated from
the CNN, namely firing patterns of the CNN. Therefore,
the matrix X satisfies following conditions:

∑N
m=1 Xim =

1,
∑N

i=1 Xim = 1, and Xim ∈ {0, 1} (i,m = 1, ...,m). In Eq.
(6), the first and the second terms correspond to the con-
straints of the QAP (Eqs. (2) and (3)) and the third term is
the objective function of the QAP. From Eqs. (5) and (6),
the synaptic weight between the imth neuron and the jnth
neuron, and the threshold of the imth neuron are defined as
follows:

wim; jn = −2
{

A(1 − δmn)δi j + Bδmn(1 − δi j) +
di j fmn

q

}
(7)

θim = A + B (8)

where δi j is Kronecker’s delta, and q is a normalization
parameter. In a single iteration, all neurons are asyn-
chronously updated.

3. Firing Decision Method

For the N-size QAP, N2 chaotic neurons on an N × N
square grid are prepared, and then, a firing patter of the
CNN represents a solution of the QAP. If the imth chaotic
neuron fires, the ith facility is assigned at the mth location.
However, we cannot always obtain feasible solutions from
outputs of the neurons because an output of the chaotic neu-
ron takes an analog value. Thus, a firing decision method
is necessary to obtain the feasible solutions from the CNN.
In the CNN, if the internal states of the imth chaotic neu-
ron takes large value, it indicates that, for the facility i, an

assignment to location k is good. Therefore, it is expected
that if the neurons whose internal state is large value fire,
good feasible solutions are constructed.

3.1. Greedy Method [4, 5]

To construct feasible solutions at every iteration, we have
already proposed a firing decision method using the inter-
nal states of the chaotic neurons [4, 5]. This method is
greedy algorithm to maximize a sum of the internal state of
firing neurons. The procedure of the method is described
as follows:

1. The imth chaotic neuron, that gives the maximum
value of the internal state among all of the internal
states is selected. Then, we set Xim = 1, namely the
imth neuron fires.

2. To satisfy the constraints of the QAP (Eqs. (2) and
(3)), for other neurons in the ith row and the mth col-
umn, we set Xik = 0 (k , m) and ml = 0 (l , i).

3. The neurons which have already been selected in
Steps 1 and 2 are excluded from the candidate at step
1. Steps 1 and 2 are repeated N times to make a feasi-
ble solution.

3.2. Max-Sum Model

In the CNN, the neurons whose internal state is large
value indicate good assignments of facilities. Thus, it
seems that if a sum of the internal state (yim) of firing neu-
rons is maximum, the best solution is obtained from the
CNN. A max-sum model maximizes the sum of the internal
state of firing neurons. The max-sum model is described as
follows:

maximize
N∑

i=1

N∑
m=1

Ximyim (9)

subject to
N∑

m=1

Xim = 1 (i = 1, ...,N) (10)

N∑
i=1

Xim = 1 (m = 1, ...,N) (11)

Xim ∈ {0, 1} (i, j = 1, ...,N) (12)

where yim is the internal state of the imth chaotic neuron and
Xim is a decision variable or a firing pattern of the CNN. If
the decision variable Xim is 1, the facility i is assigned to
the location m, namely the imth chaotic neuron fires.

3.3. Max-Min Model
The max-sum model maximizes the sum of internal state

(yim) of firing neurons. Therefore, the neuron whose inter-
nal state is low may fire. In order not to fire such neuron,
a max-min model is used. The max-min model maximizes
the minimum value of the internal state of firing neurons.
The model is described as follows:
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maximize min
i=1,...N

N∑
m=1

Ximyim (13)

subject to
N∑

m=1

Xim = 1 (i = 1, ...,N) (14)

N∑
i=1

Xim = 1 (m = 1, ...,N) (15)

Xim ∈ {0, 1} (i,m = 1, ...,N) (16)

3.4. Mixed Model

In a mixed model, a firing pattern is decided by con-
sidering the minimum value of the internal state of firing
neurons and the sum of the internal state of firing neurons.
In the mixed model, first, a minimum value L of the in-
ternal state of firing neurons is calculated by the max-min
model. Next, a firing pattern of the CNN is decided by the
max-sum model with a new constraint. The new constraint
is that the internal state of firing neurons is not less than
the minimum value L. The mixed model is described as
follows:

maximize
N∑

i=1

N∑
m=1

Ximyim (17)

subject to
N∑

m=1

Xim = 1 (i = 1, ...,N) (18)

N∑
i=1

Xim = 1 (m = 1, ...,N) (19)

N∑
m=1

Xim ≥ L (i = 1, ...,N) (20)

Xim ∈ {0, 1} (i, j = 1, ...,N), (21)

where L is the minimum value of the internal state of the
firing neurons. Thus, by Eq.(20), the neurons whose inter-
nal state is less than L cannot fire.

3.5. Simulations and Results
To investigate the important properties of the firing deci-

sion methods, we prepare three benchmark problems from
QAPLIB: Had20, Hug20, and Tai20a [8]. For all instances,
the distance and the flow matrices are symmetric. di j and
fmn are uniformly generated for all instances.

The values of parameter α in the CNN method (Eq.(5))
are set to between from 0.95 to 1.25 by step size 0.025.
The values of parameter kr are set to between from 0.700
to 0.975 by step size 0.025. The value of parameter ε
and θim is set to 0.02 and 1.0, respectively. The param-
eters A, B, and q are set to various values depending on
the instances (Table 1). The CNN method is applied for
2,000 iterations, namely, 2, 000 solutions are obtained in
one trial. We compared the average gap between obtained
solutions with 30 different initial conditions and the opti-
mum solution. The initial conditions of the permutation p

Table 1: Values of parameters A, B, and q

.

Instance A B q

Had20 34 34 1,100
Nug20 32 32 540
Tai20a 34 34 90,000

are randomly decided. In the simulations, for the max-sum
model, the max-min model, and the mixed-model, a firing
pattern X is found by the general-purpose MIP solver. In
this simulation, we used the Gurobi Optimizer 5.5.0 [9].

Figure 1 shows the performances of each method. From
Fig. 1, we observe that, for all methods, good solutions are
obtained from same values of parameters α and kr. How-
ever, the best result obtained by each method is large dif-
ference.

Table 2 summarizes the best result of each method. In
Table 2, the numbers with bold characters indicate the best
and italic characters indicate the second best. From Table
2, for Nug20 and Had20, the max-min model and mixed
model show the best performance. Therefore, for obtain-
ing good solutions from the CNN, it is important to maxi-
mize the minimum value of the internal state of firing neu-
rons. However, for Tai20a, the performances of the max-
min model is the worst. On the other hand, the models
that optimize the sum of the internal states of firing neu-
rons good solutions. These results indicate that firing pat-
terns of the CNN (solutions of the QAP) should be decided
not only to maximize the sum of the internal state of firing
neurons but also to maximize the minimum value of the
internal state of firing neurons.

4. Conclusions
In this paper, to improve performances of a firing deci-

sion method [4, 5], we investigated what factors are essen-
tial to the firing decision method by using the three models:
max-sum model, max-min model, and mixed-model. The
max-sum model makes firing patterns of the CNN (solu-
tions of the CNN) so that a sum of the internal state firing
neurons is maximized. On the other hand, the objective
of the max-min model is to maximize the minimum value
of the internal state of firing neurons. The firing patters
of the mixed model are generated by considering the min-
imum value of the internal state and the sum of internal
state. From the results, we clarified that firing patterns of
the CNN (solutions of the QAP) should be decided not only
to maximize the sum of the internal state of firing neurons
but also to maximize the minimum value of the internal
state of firing neurons. In future works, it is important to
develop a firing decision method not only for maximizing
the minimum value of the internal state of firing neurons
and but also for maximizing the sum of the internal state of
firing neurons.

The research of T.M. is partially supported by Grant-
in-Aid for Young Scientists (B) (No.25870770) from the
JSPS.
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Greedy Method [4, 5] Max-Sum model Max-Min model Mixed model

(a) Had20

(b) Nug20

(c) Tai20a

Figure 1: Results of each firing decision method. Percentages of gaps between average obtained solutions and the optimal
solutions are shown by color-shaded bars.

Table 2: The best results of the CNN with each firing decision method. The values are percentages of gaps between
obtained solutions and the optimal solutions for each problem. Bold characters indicate the best and italic characters
indicate the second best.

Instance Greedy method[4, 5] Max-Sum model Max-Min model Mixed model

Had20 1.6835 (1.050/0.850) 1.0165 (1.050/0.825) 0.9141 (1.050/0.825) 0.9883 (1.050/0.825)
Nug20 1.5720 (1.075/0.825) 0.7004 (1.075/0.775) 0.6615 (1.075/0.775) 0.6070 (1.075/0.775)
Tai20a 2.3186 (1.150/0.800) 1.5407 (1.200/0.700) 1.9742 (1.200/0.750) 1.6113 (1.200/0.750)
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