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Abstract—This paper shows the causes feetiveness fully analyzed from several points of views. An analysis
of the chaotic noise for combinatorial optimization prob-using the method of surrogate data in Ref. [7] showed that
lems, and realizes ideal searches based on the theoryaimimportant characteristic of the chaotic fluctuatioffise
its background. Our previous works showed thiééetive tive for performance improvement of heuristic algorithms
chaotic noise for combinatorial optimization has negativés its specific autocorrelation. The results clearly showed
autocorrelation. It has been also shown in a previous réhat the stochastic surrogate data preserving the augscorr
search that such negative autocorrelation in asynchronolasion of the chaotic dynamics improves the performance of
sequences minimizes the cross-correlation among theheuristic algorithm to the same level as the chaotic dynam-
By applying such dynamics to asynchronously updateids can do. Suchfective autocorrelation of the chaotic
combinatorial optimization algorithms, cross-corradati dynamics has negative value in lag 1 and decreases with
among the heuristic operations becomes lowest and ideéamped oscillation.
ally complex search can be realized. In this paper, such Importance of such autocorrelation with negative auto-
ideal searches are applied to the Hopfield-Tank neural neferrelation could be also seen in the chaotic CDMA [8, 9].
works and the 2-opt methods. The results clearly show thaksynchronous cross-correlation between the sequences can
the negative autocorrelation dynamics minimizes the erosbe minimized by the sequences, whose autocorrelation is
correlation among the heuristic operations and such ideR(r) = C x A7, 1 = -2+ V3 [9].
complex searches have highest performance. The proposedccording to the theory, the chaotic fluctuations with
scheme does not require careful parameter settings to masgative autocorrelation make asynchronously updated
imize its performance even for the large-scale problems. heuristic algorithms having lowest cross-correlation agio
the heuristic operations (moves) in a searching space. By
applying such a lowest-cross correlation moves among the
heuristic operations, highly distributed searching dyimam

To the heuristic solution search algorithms for combian be generated, and it enables ideal avoids of local opti-
mum solutions.

natorial optimization problems, stochastic or determinis i
tic fluctuations have been applied in order to avoid traps 1hiS Paper shows the performance of the novel method

at their local optima. As one of the stochastic method4!Sing negative autocorrelation dynamics by applying it to
the simulated annealing [1] makes stochastic fluctuatioSYnchronously updated heuristic methods, the Hopfield-
gradually decrease and obtains better solution when it cof@nk neural networks and the 2-opt methods. The
verges. As a deterministic approach, tabu searches avéigP€sgue Spectrum Filter (LSF) is introduced to make au-

repeated search of same areas by forbidding the previo{@§orrelation of searching dynamir) = C x A". First,
moves [2]. As another deterministic fluctuation to avoidhe performances of a heuristic method with additive noise

sticking at undesirable local optimumffectiveness of the ar€ analyzed to clarify fiectiveness of the negative auto-
chaotic dynamics has been shown by many results [3]-[ orrelation. Second, the proposed ideal search is apmlied t
The first proposal of the chaotic optimization was orf'€ Neural networks and the 2-opt methodsieéiveness

the Hopfield-Tank neural networks and their performanced the proposed approach is shown by analyzing relations
could be improved better than those with the stochastf%etween solvable performances, autocorrelation of heuris
fluctuations [3]. Chaotic dynamics has been also applidif OPerations, and the cross-correlation among the opera-

to the heuristic methods, such as the 2-opt methods f8P"S-

the Traveling Salesman Problems (TSPs) [4, 5] and the 2-

exchanges for the Quadratic Assignment Problems (QAP3) Effects of Chaotic Noise for Asynchronously Up-

[6]. Those results clearly show that the chaotic dynamics gated Searches

is more dfective than the conventional stochastic or deter-

ministic approaches even for large-scale problems. In this section, various additive noise sequences are ap-
Effectiveness of the chaotic fluctuation has been carelied to the Hopfield-Tank neural networks, and the depen-

1. Introduction
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dency of the performances on the noises are analyzed. Tingproves the performance of the asynchronously updated
additive noise is introduced to the neural networks by usinigeuristic methods much better than the white noise.
the following simple neuron update equation,
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where x;;(t) is the state of thei(j)th neuron at timet, R RV
Wijk is the connection weights between thgj)th and the P
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(k,)th neuronsg;; is the threshold of thei,(j)th neuron, .
zj(t) is the noise sequence applied to the)th neuron at Figure 2: Autocorrelation cdicients of the chaotic and
timet, 8 is the amplitude of the noise, the output function the stochastic noises, used as the additive noise for the mu-
is the sigmoidal functionf (y) = 1/(1 + exp-y/e¢), respec- tually connected neural networks.
tively. For the additive noise sequenag$t), stochastic or
chaotic sequences are introduced. They are normalized to
have zero mean and unit variance.

Here we compare the performances of the neural ne§: Theory of Negative Autocorrelation for Asyn-
works with several dferent stochastic and chaotic additive  chronously Updated Heuristic Oper ations
noise sequences, which havéféient autocorrelations. In
Fig. 1, we compare the results on the 20-city TSP used in The previous section showed that the chaotic dynamics
Ref. [7] and the QAP, Nug12 in QAPLIB [12], by showing with negative autocorrelation improves the performance of
the rate of the optimum solutions obtained in 100fedti  the asynchronously updated heuristic methods. Such neg-
ent initial conditions, with changing the noise amplitudeative autocorrelation chaos has been also applied in other
B. CutdT time for each run is set at 2000 iterations. Adield, wireless communications using the CDMA. In DS-
the stochastic sequence, we introduce the white Gaussi@®MA, cross-correlation among the sequences should be
noise. As the chaotic sequences, we introduce two typésver to minimize interferences among the user signals. In
of the Chebychev maps chaos and the logistic map chadef. 14, autocorrelation of each sequence to minimize the
with different parameters. cross-correlation among the sequences has been calculated
mathematically.

Here, cross-correlation between two sequences, X and
Y, which takes two states, 1 or -1, is calculated, as an ex-

I
]

ce (%)

e ample. For the asynchronously updated methods, asyn-
£ . E chronous mutual cross-correlation between X and Y can
: . } ; AT be minimized by the following terms, which is brought by
2 Bt : AL the diterence of the timing between the sequences caused
ks E emet, §B #====% by asynchronousness,
(8)TSP (b)QAP

I = (L-ORYCX V) +RY1+LXY), (2
Figure 1: Solvable performances of the mutually connected
neural network with chaotic and stochastic noises, whoseghere, ¢ is the diference of the timing between X and
autocorrelations are fierent. Y caused by the asynchronous updatiﬁ,i,/o is the av-
erage mutual interference of the even and the odd cross-
. _correlation between the sequences X and Y ofthesym-
From Figs. 1 (a) and (b), we can see that the chaotic sgp| respectively. When we define each sequence, taking -1

quences, generated by the logistic map veite 3.82 and  and 1 by the Markov chain with the following state transi-
3.92, improve the performance of the neural network mucton probability matrix,

better than other noise sequences. As clearly shown in Fig.
2, these two chaotic noises, the logistic map vaith 3.82 PO = | 2, = 3)
and 392, have the negative value in lag 1 and converge to 1;21 %ﬂ
zero with damped oscillations. Other noises correspond- )
ing to the lower performance have white autocorrelatiorfn® average asynchronous mutual interference among the
The analysis in Ref. [7] using the method of surrogate daggduences X and Y can be obtained as the following when
showed that specific autocorrelation of the chaotic noise #&# 0, 5
effective for performance improvement. By the numerical ETEI2] = 21+4+4 4

- : : s[Exy[17]] 4)
results in Figs. 1 and 2, importance of the negative au-

1+2

[

3 1-2
tocorrelation noise can be clearly understand. In the of=rom the Eq. (4), it becomes clear that the asynchronous
timization algorithms, the negative autocorrelation eoiscross-correlation between the sequences can be minimized
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by settingA at value corresponding to the minimum ofthe LSF in Eq. (7). By comparing with the results in Fig.
E4[Exv[12]], which can be obtained ab= -2 + V3. 1, we can see that the results using the noise, which has

From the above calculation result, we can understandhite autocorrelation, could be much improved, and their
that the autocorrelation function of the ideal sequence bperformances become the same level as the negative au-
comes,R(r) = C x A" with A = =2 + V3. In the chaotic tocorrelation chaotic noise for the TSP, and are improved
CDMA researches [8, 9, 13],ffectiveness of such se- more than 30% better than the original chaotic method
quences, whose autocorrelation is around -2+ V3, has  for the QAP. For such improvements in white autocorre-
also been shown by computer simulations. In this researdation noise cases, the negative autocorrelation paramete
we analyze theféectiveness of such minimization of cross-r around-2 + V3 ~ -0.268 has the best performances.
correlation for the asynchronously updated heuristic metfThese results confirm the theories of the solution search
ods for combinatorial optimization problems. In the asynability described in previous section that the negative-aut
chronously updated solution search algorithms, the lowesbrrelation for each axis makes the lowest cross-coroglati
cross-correlation makes the dynamics the most distributiamong the axes of the searching dynamics and that makes
and theoretically ideal search will be realized. ideal distributive searching dynamics.

4. Realization of Ideal Search on Asynchronously Up-
dated Methods

€ 100
g

In this section, we generate such ideal dynamics using:

the LSF [13], and analyze thdtectiveness in a heuristic £ /

Solvable Performance

13

algorithm as an example, the mutually connected neuralm o \ ol
network used in Sec. 2. The LSF has been proposed by ct=griesbrirsitarees o
Umeno et al. [13] for generating the ideal sequences for (a)TéP (b)(éAP

the asynchronous CDMA, which can be expressed as a Fi- i
nite Impulse Response (FIR) Filter, Figure 3: Relation between the solvable performances of

the mutually connected neural network with the LSF and
autocorrelation parameter.

M
ft) = Z it - 7). (5)
=0

By applying this filter to the white sequences, which has For more clearly verifying the theory, the relation be-
zero autocorrelations, their autocorrelation can be meifi tween the autocorrelation cieient of each axis (neuron)
to C x r™. Therefore, by setting = -2 + V3, ideal auto- and the asynchronous cross-correlation among the axes
correlation dynamics to minimize the asynchronous croséfeurons) is shown in Fig. 4. The autocorrelation and the
correlation can be achieved by such filter. In Ref. [13], théross-correlation are calculated using(t), which is the

bit error rate performance could be improved 15% computput of the LSF. The autocorrelation is the value at the
pared to the conventional white sequence cases. By settit@§ 1, which corresponds ta The cross-correlation is the

M — oo, Eq. (5) can be modified to the suitable form foraverage of all combinations of the axes. From the Fig. 4,
numerical computatiorf (t) = r f(t — 1) + f(t). it becomes clearly that the negative autocorrelation atoun

Here, we apply the LSF to the improvement of the so=2 + V3 makes the asynchronous cross-correlation min-
lution search performance of the asynchronously updaté@um. This minimum cross-correlation makes the algo-
heuristic algorithms. First, we apply the LSF to the mututithm the most distributive and improves the performance
ally connected neural network, and analyze its spatioter@f the solution search algorithm.
poral searching dynamics. To introduce the LSF, the output

function of the neuronal update equation in Eq. (1) is mod- _— .
ified to the following form, d5 gr;zltltfzs:fr;ro;elggT\iSSearch Generation Method to

N N
Zzwijk,xk,(t)_oij +pzi(t), (6) In this section, the proposed approach is applied to

yij(t+1) =

k=1 1=1 the 2-opt method for the TSPs, which is applicable to
Giit+1) = ¥ +yjt+ 1), (7) much larger combinatorial optimization problems than the
Xijt+1) = 1/(1+expESjt+1)/e). (8) Hopfield-Tank neural networks. ~Although the solution

space does not corresponds to the state of the algorithm as
In the above equations, Eq. (7) is corresponding to thie the mutually connected neural network, the 2-opt have
LSF, and modifies the autocorrelation of the internal stat@uch better performance and more useful. Since the 2-
of each neuron. optis also asynchronously updated heuristic algorithen, th
The solvable performances of this modified neural nefiegative autocorrelation dynamics will improve the perfor
works is shown in Fig. 3, with changing the parametef mance as well.
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Figure 4: Relation between the autocorrelationfioents Figure 5: Relation between autocorrelation parameter of
at lag 1 and the average cross-correlation in the searchitige LSF applied to the 2-opt method and its performances
dynamics of the mutually connected neural networks witbn five TSPs.

the LSF.

0.2 0.4

asynchronously updated heuristic algorithms. By using
In order to introduce the LSF to the 2-opt, first the updateegative autocorrelation dynamics for each asynchronous
equation of the 2-opt method is defined as the followingpeuristic operation of the solution update algorithm, sfos
equations, correlation among the operations can be minimized, and
st + 1) = Ajj(t), (9) ideally distributive solution search dynamics can be real-
ized. The results clearly showed improvement of the pro-
G‘posed scheme also for the larger problems.
Our future work is to verify the fectiveness of the pro-
posed approach on various asynchronously updated heuris-

fic algorithms. We will make clear proof of thdtective-

whereA;j(t) are the diference of the tour length decrease
by the 2-opt exchange, which connects the cignd the

city j, at timet, and s;(t) is the corresponding internal
state, respectively. Whes;(t) > 0, the corresponding 2-

opt exchange is really applied and the current solution Ress of the proposed scheme and show the strong advantage

updated.
To apply the LSF to the 2-opt method, the LSF is intro-Of the proposed approach.

duced to the Eq. (9) as follows, with settifv) — oo,
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