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Abstract—High efficiency image reconstruction and 

inversion algorithm is one of the key technologies for 
interference synthetic aperture microwave radiometer. Due 
to the fact that the brightness temperature of the Earth has 
a local smoothness characteristic, it could be random 
sparse interferometry. Based on compressive sensing, this 
paper proposes a novel imaging approach of sparse 
interferometry to microwave radiation. According to the 
sparity of the image and the characteristic of the 
interferometry, we set up the microwave radiation sparse 
interferometric imaging model using Total Variation 
constraints on the basis of the traditional microwave 
radiation imaging. In the model, we use a new sparse 
interferometry to sample frequency information on the 
basis of the sparse antenna array. During the process of 
microwave radiation inversion imaging, we use the steepest 
descent method and the alternate iteration method 
reconstruct. Experimental results show that the proposed 
approach is able to rapid, accurate and efficient inverse 
microwave radiation image. 

 
Index Terms—interference synthetic aperture microwave 

radiometer, compressive sensing, random sparse interference 
method, TV reconstruction algorithm, steepest descent method, 
Alternating Direction Algorithm, Total Variation, image inversion  

I. INTRODUCTION 
 
     Interference synthetic aperture microwave radiometer 
(ISAMR) was suggested in the 1980s as an alternative to real 
aperture radiometry for Earth observation at low microwave 
frequencies with high spatial resolution [6]. ISAMR integrated 
small antenna array into a large observation aperture, and 
imaging without mechanical scan, so it can solves the 
disadvantages of real aperture microwave radiometer [12]. How 
to efficient and accurate inverse the synthetic aperture 
microwave radiation image is the key. According to the Fourier 
transform relationship between inversion bright temperature of 
ISAMR and visibility function, He Yuntao [2] and other scholars 
put forward various inversion algorithm based on Fourier 
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transform, but this algorithm is very high requirement for the 
hardware system and the imaging error is larger. The present 
synthetic aperture image inversion methods are mostly 
deterministic inversion method [7], so it is rarely make full use 
of the local smoothness characteristics of brightness 
temperature image. For then now L-Band satellite-based 
ISAMR, it still needs a diameter of 9m antenna array to achieve 
50 km  spatial resolution [3], with the microwave radiation 
imaging to refinement and structured development, we must 
increase the diameter of the antenna array to satisfy the need of 
high resolution. ISAMR collect tens of millions data during one 
observation [8]. So the Nyquist spatial interferometry and 
conventional microwave radiation imaging method are difficult 
to achieve. 
    Compressed Sensing (CS) has become the research hot spots 
focus in various fields [13], which use the adaptive linear 
projection to preserve the original structure of the signal, and 
accurately reconstruct the original signal through numerical 
optimization [10]. In this method, it is also an increasing 
dimension problem from measured values to the original signal, 
which is similar to super-resolution image reconstruction.  
   Therefore, to against the problem of huge data and less 
resolution of the traditional microwave radiation interference 
measuring method, by fully exploiting the spatial structure 
information of the microwave radiation imaging, from the 
aspects of CS, using the sparse random interference measuring 
method of microwave radiation imaging to study [9], this paper 
put forward a imaging approach of sparse interferometry to 
microwave radiation, reduce the complexity of the imaging 
system structure and hardware cost, and break through the 
inherent limits of the imaging system’s spatial resolution to get 
the high spatial resolution image, which is close to the 
expensive big aperture imaging system. After several 
simulation experiments, the results show that the approach can 
get good image inversion result. 

II. PRINCIPLE THEORY 
A. Principles of CS 
   The area of CS was initiated in 2006 by two ground breaking 
papers by Candès, Romberg, and Tao [5], and by Donoho [4]. CS 
theory mainly includes signal sparse representation, encoding 
measurement and reconstruction algorithm. If the signal has 
only a few nonzero elements, then the signal is sparse, so it can 
project onto an orthogonal transformation matrix, use far lower 
sampling rate than the traditional Nyquist sampling to sample 
and compress, and apply the prior information of the original 
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signal to accurately reconstruct it. The mathematical model of 
compressed sensing is shown as follows: 

The N dimensional real signal 1×∈ NRX is being unfold 
under a set of orthogonal basis { }N

ii 1=Ψ iΨ (is N dimensional 
Column vector): 
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The matrix form is: 

 θΨ=x  (2) 

[ ] NN
N R ×∈ΨΨΨ= ,....,, 21ψ is the orthogonal basis, and satisfies 

ITT =ΨΨ=ΨΨ . [ ]TNθθθθ ,....,, 21= is expansion coefficient 
vector. Assuming that the coefficient is K-sparse vector, and 
the number of nonzero coefficient is K, K<<N，so we can use 
another observation matrix NMR ×∈Φ (M<<N) which is not 
relevant with the orthogonal basis dictionary to observe 

 xy Φ=  (3) 

M linear observations (or projections) MRy ∈ can be get. 
These small amount of linear projection contains enough 
information to reconstruct signal x. The observations y can be 
reconstructed from signal x When ΦΨ=Θ satisfies the 
constraint of restricted isometry property (RIP) [1]. The 
reconstruction can be expressed by solving the following 
optimization problem 

 xytsxT

x
Φ=Ψ .min

0
 (4) 

But the optimization problem (4) is 0l norm, and it’s an NP - 
Hard problem. In order to solve the problem, we usually use the 

1l  norm instead of 0l norm, namely: 

 xytsxT

x
Φ=Ψ .min

1
 (5) 

B. ISAMR sparse interferometry 
ISAMR has the high perceptive ability of the earth 
observation at low microwave frequencies with high 
resolution [11]. It measures the complex correlation between 
the signals collected by pairs of spatially separated antennas 
which have overlapping fields of view, yielding samples of 
the visibility function V (also termed complex visibilities) of 
the brightness temperature distribution T of the observed 
scene. The relationship between ( )uV  and ( )ξT  is given by [8]: 
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where klu is the spatial frequency associated with the two 

antennas kA and lA (namely, the spacing between the antennas 
normalized to the central wavelength of observation), the 

angular position variable ξ is direction cosine(θ andφ are the 
traditional spherical coordinates, ( )ξkF and ( )ξlF  are the 
normalized voltage patterns of the two antennas and with 
equivalent solid angles kΩ and lΩ , klr~ is the so-called 
fringe-wash function, which accounts for spatial decorrelation 
effects, 0/ fuklξ is the spatial delay, and 0f is the central 
frequency of observation. When the nonzero base line number 
of ISAMR is M, M equations as shown in (6) can be expressed 
by matrix: 

 GTV =  (7) 

Where V is the column vector of the visibility function 
sampling, T is the discrete brightness distribution，and G is 
model operator matrix. We know that the relationship  between 
V and T is actually Fourier transform, so we begin to disperse 
for the space frequency on the basis of (7), and then randomly 
selected spatial Fourier frequency component, the microwave 
radiation sparse random interference measurement model is as 
follows： 

 TFV ∧=  (8) 

∧F is the sparse observation matrix. When T is sparse, we use 

∧F  to interferometry for T on the basis of sparse antenna. By 
doing this, we can get the useful information which is far less 
than the amount of microwave radiation image data. While the 
traditional interferometry imaging method based on Nyquist 
sampling theory, so the amount of sampling information is 
relatively big. Fig.1 is the principle of traditional interferometry 
imaging method, in this method, the antenna array are arranged 
to get the visibility function V, which must be consistent in 
Nyquist theory. We, then get the brightness temperature V 
through the linear reconstruction to the visibility function. Fig. 
2 is the principle of new random sparse interferometry. Firstly, 
we get the microwave radiation V from very sparse antenna 
arrays just as Fig. 1, similarly using the random sparse 
observation matrix ∧F to sparsely sample the spatial frequency. 
Finally we can use the nonlinear reconstruction algorithm to 
inversion the brightness temperature. 
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reconstruction
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Fig.1.Traditional interferometry imaging method 
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Fig.2. Random sparse interferometry image method 

 
C. The reconstruction algorithm 

According to the area smoothness of microwave radiation 
image, with the thought of CS, we use Total variation (TV) to 
sparse representation the image, so as to save all the 
information. The definition of TV is shown as follows: 

 ( ) ( )∑ −− −+−=
ji

jijijiji TTTTTTV
,

2
1,,

2
,1,)(  (9) 

So in the foundation of (2), the microwave radiation image’s 
sparse representation model can be presented as follows: 

 αΨ= ∧FV  (10) 

Whileα is the useful information which is far less T, Ψ= ∧FA , 
NMRA ×∈  is the random observation matrix, in fact, it is the 

part of random Fourier observation matrix. The part of random 
Fourier observation matrix is that to generate a random N×N 
Fourier matrix firstly, then to sample of the M line randomly to 
form a new matrix, and unitized for each column lastly. 
Equation (11) is a morbid linear equation from the 
mathematical perspective. In order to solve the problem, we 
build the following TV model based on the principle of CS and 
the characteristic of temperature image  
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While iW  is a secondary variable, ⋅ can be either 1-norm or 

2-norm. iD  is the differential operator. How to accurately 
resolve the formula (11) is the key. The (11) is a convex 
optimization problem, so we use the Lagrange principle to 
transfer the constrained problem into unconstrained problem as 
follows: 
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While, λ,iv are weight coefficient, and βμ , are penalty 
factor. In order to solve the problem, it is necessary to set 
appropriate value for weight coefficient λ,iv . However the 
above problem is still difficult to solve, because it is 
non-differentiable and non-linear, therefore we utilize the 

separable structure of the variables and alternating direction 
algorithm (ADM) [14] to optimize. So the sub-problem of T and 
W are as follows: 
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In order to resolve W, we firstly fix T, and we use the following 
2D shrinkage-like formula [15]  
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For fixed iw , the minimization kl of with respect bT to 
becomes a least squares problem, its gradient is  
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    Forcing ( )Tkd =0. Theoretically, it is ideal to accept the 

exact minimizer as the solution of the u-subproblem by directly 

resolving the (14). However, it is too costly to implement 

numerically. Therefore, the steepest descent method is highly 

desirable. The method is able to solve iteratively by applying 

the recurrence formula 

 kk
kk dTT α−=+1

 (17) 

The initial point 0T  is yTA ， kd is the gradient direction of 

the objective function, kα  is determined by the inexact search. 

III. SIMULATION AND EXPERIMENT RESULTS  
    In this section, we present several simulations to proposed 
method. All simulations were performed under Windows XP 
and MATLAB R2009a running on a Acer laptop with an Intel 
Core i3 CPU at 2.4GHz and 2GB of memory. We generated our 
test from the image moon. The dimension of the moon is 64×
64. We introduce the concept of compressed radio, which is the 
radio between the number of nonzero elements and the total 
number of elements. In our experiments, we simply setμ=2^8 
andβ=2^5, the radio are set 0.4, 0.5, 0.6, 0.7, 0.8. The 
reconstruction result of different radio is given in TABLE 1, 
and the following quantities are list the number of iteration 
(Iter), the CPU time (T) in seconds, the peak signal to noise 
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ratio (Psnr), root mean square error (Rmse) and Bias. The 
quality parameters of the image have been shown in the 
following TABLE 1. 

    TABLE 1 

PARAMETER FOR TV RECONSTRUCTION ALGORITHM  
Radio 0.4 0.5 0.6 0.7 0.8 

Iter 123 99 109 107 94 
T 8.753259 9.759920 11.864406 13.549631 14.832024

Bias 1.0071 0.8687 0.7744 1.0471 0.8821 
Rmse 2.1626 1.9728 1.8009 2.2986 1.9267 
Psnr 41.4311 42.2290 43.0211 40.9016 42.4345 

 
   The inversion images of different radio have been shown as 
follows: 
 

             
   (a)Original image                       (b) Inverse image, radio=0.4    
 

      
(c) Inverse image, radio=0.5        (d) Inverse image, radio=0.6 

 

          
(e) Inverse image, radio=0.7         (f) Inverse image, radio=0.8 
 
From the above form and the inversion images, we can be seen 
that when the ratio is greater than or equal to 0.4, the effect of 
the inversion image is better, and the Psnr value is bigger. With 
the increase of the ratio, the time that used to reconstruction 
becomes longer, and the value of Psnr becomes larger, so the 
quality of the inversion image becomes better. When the radio 
is 0.6, we can get the best inversion image. From the table1, we 
can see that the CPU time is between 8s and 15s, it is very small. 
So the algorithm is very fast for the image reconstruction.  

IV. CONCLUSION 
     In this paper, we propose the imaging approach of sparse 
interferometry to microwave radiation, and apply the TV 
reconstruction algorithm to reconstruct the image. The 
simulation results show that the proposed method is effective.  

This approach is better than the traditional algorithm of using G 
matrix for image reconstruction and can break through the 
problem by traditional microwave radiation imaging method. 
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