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Abstract—Phase description is an essential tool for
analytically investigating synchronization phenomena
of limit cycle oscillators. In this paper, introducing a
new type of phase description, we discussed the noise-
induced phase synchronization of strongly fluctuating
oscillators such as chaotic oscillators. We derived a
probability density function of phase differences be-
tween oscillators, which enables us to explore statisti-
cal properties of the synchronization phenomena.

1. Introduction

Synchronization is a ubiquitous phenomenon in the
real world. We can observe synchronization phenom-
ena of fireflies [1], frogs [2], slime mold [3] and neurons
[4]. To analytically investigate these synchronization
phenomena, the phase description is very useful [5].
The phase description enables us to reduce higher-
dimensional dynamics to a simple equation with one
degree of freedom, which is called a phase equation.

However, we cannot directly apply the conventional
phase description to strongly fluctuating oscillators
such as chaotic oscillators. Although many previous
works [6, 7, 8] numerically explore the phase synchro-
nization of chaotic oscillators, analytical frameworks
have not been established yet. Recently, several works
have tried to apply the phase description to chaotic
oscillators [9, 10, 11]. We must note that the chaotic
oscillators stochastically response to external forces in
the sense that its response is not only determined by its
phase. To discuss the synchronization of chaotic oscil-
lators, it is important to take this stochastic response
into accounts. Previous works cannot effectively char-
acterize this stochasticity.

In this paper, we introduce a new type of phase
description, which effectively describes the dynamics
of strongly fluctuating oscillators. We derived an ef-
fective phase equation that reproduces the long-time
dynamics of such oscillators. In our theory, we use a
continuous spectrum to characterize the stochastcity
of the response of chaotic oscillators, which success-
fully reproduces statistical properties of chaotic oscil-

lators.
Applying our theory to chaotic oscillators, we

discuss the noise-induced phase synchronization of
chaotic oscillators. We derived the probability den-
sity function of phase differences between oscillators,
which enables us to explore statistical properties of
various synchronization phenomena.

2. Phase Description

2.1. Introducing a phase equation

We consider a chaotic oscillator described by

Ẋ = F (X) + σG(X)p(t), (1)

where X ∈ Rn is an n-dimensional state variable,
F (X) ∈ Rn is an unperturbed vector field, p(t) ∈ R
is an external force, σ is a parameter to control the
intensity of the external force, and G(X) ∈ Rn rep-
resents the coupling of the oscillators to the external
force.

Here, we introduce a phase φ(t) = φ(X(t)) ∈ [0, 2π)
as a function of the state variable X(t). Using the
chain rule, we can obtain an equation describing the
dynamics of φ(t) as

φ̇ = gradXφ(X(t)) · Ẋ = ω(t) + σζ(t)p(t), (2)

where

ω(t) = gradXφ(X(t)) · F (X(t)), (3)
ζ(t) = gradXφ(X(t)) · G(X(t)). (4)

Although we have many options to define the func-
tion φ(X(t)), we employ the definition proposed by
Schwabedal et al. [11]. In this definition, the phase
φ(X(t)) is defined so that an integrated square er-
ror

∫
|2πt/T − φ(X(t))|2dt is minimized, where T is a

mean period of the oscillator.
In the conventional phase description, under the as-

sumption that the system of Eq. (1) has a limit cycle
solution χ(t) and a perturbation is very weak (σ � 1),

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 344 -



we can approximately rewrite Eq. (2) to the following
equation:

φ̇ = ω + σz(φ)p(t), (5)

where ω is a constant called a natural frequency, and
z(φ) is a function of φ(t) called a phase sensitivity and
is defined as z(φ) = gradXφ(χ(φ)) · G(χ(φ)).

However, we cannot apply the conventional phase
description as demonstrated in Eq. (5) to chaotic os-
cillators, because ω(t) is not constant and ζ(t) is not
an explicit function of φ(t) in case of the chaotic oscil-
lators. We need a different type of phase description
that effectively describes the stochasticity of ω(t) and
ζ(t), namely, the effective phase description. In the
following sections, we regard ω(t) and ζ(t) as stochas-
tic processes, and derive a closed-form equation of the
phase φ(t).

2.2. Natural frequency

We define ω̂ as a temporal average of ω(t) as follows:

ω̂ = 〈ω(t)〉t, (6)

where 〈·〉t represents a temporal average defined as
〈·〉t = limτ→∞(2τ)−1

∫ +τ

−τ
· dt. In this paper, we call ω̂

a natural frequency. Here, we further define a diffusion
coefficient Dω as follows:

Dω =
∫ +∞

−∞
〈[ω(t) − ω̂][ω(t− s) − ω̂]〉tds. (7)

which is called a natural diffusion coefficient in this
paper. In the long-time limit (t1 − t0 � 1), we can
apply the diffusion approximation to ω(t) as follows:

E

[(∫ t1

t0

[ω(t) − ω̂]dt
)2

]
' Dω(t1 − t0), (8)

where E[·] is the expectation over realizations of the
stochastic process ω(t).

Thus, we can approximate ω(t) as

ω(t) ' ω̂ + ηω(t), (9)

where ηω(t) is Gaussian white noise that satisfies
〈ηω(t)〉t = 0 and 〈ηω(t)ηω(t− τ)〉t = Dωδ(τ).

2.3. Phase sensitivity

We define a phase sensitivity ζ̂(φ) as follows:

ζ̂(ψ) = E[ζ(t)|φ(t) = ψ], (10)

where E[A|B] is the expectation of A under the condi-
tion of B. We can estimate the phase sensitivity ζ̂(φ)

by experiments in the same way as a phase sensitiv-
ity z(φ) in the conventional phase description. Using
ζ̂(φ), we can rewrite a phase sensitivity ζ(t) as

ζ(t) = ζ̂(φ) + ηζ(t), (11)

where ηζ(t) is a stochastic process defined as ηζ(t) =
ζ(t)− ζ̂(φ). By substituting Eq. (11) into ζ(t)p(t), we
can obtain

ζ(t)p(t) = ζ̂(φ)p(t) + ηζ(t)p(t). (12)

We assume that the stochastic processes ηζ(t) is ap-
proximately independent from the external force p(t).
Under this assumption, it holds that 〈ηζ(t)p(t)〉 =
〈ηζ(t)〉〈p(t)〉 = 0, because 〈ηζ(t)〉 = 0.

Here, we define a diffusion coefficient Dζp as follows:

Dζp =
∫ +∞

−∞

〈
[ηζ(s)p(s) − 〈ηζ(t)p(t)〉t]

×[ηζ(s− u)p(s− u) − 〈ηζ(t)p(t)〉t]
〉

s
du

=
∫ +∞

−∞
〈ηζ(s)ηζ(s− u)〉s

×〈p(s)p(s− u)〉sdu. (13)

We also define correlation functions Cζ(u) and Cp(u)
as Cζ(u) = 〈ηζ(s)ηζ(s − u)〉s and Cp(u) = 〈p(s)p(s −
u)〉s. Then, using the correlation functions Cζ(u) and
Cp(u), we can rewrite Eq. (13) as

Dζp =
∫ +∞

−∞
Cζ(t)Cp(t)dt. (14)

In the long-time limit (t1 − t0 � 1), we can apply the
diffusion approximation to ζ(t)p(t) as follows:

E

[(∫ t1

t0

ηζ(t)p(t)dt
)2

]
' Dζp(t1 − t0), (15)

where E[·] is the expectation over realizations of the
stochastic process ηζ(t).

Thus, we can approximate ζ(t)p(t) as follows:

ζ(t)p(t) ' ζ̂(φ)p(t) + ηζp(t), (16)

where ηζp(t) is Gaussian white noise that satisfies
〈ηζp(t)〉t = 0 and 〈ηζp(t)ηζp(t − τ)〉t = Dζpδ(τ).
Here, we define the power spectra Pζ(Ω) and Pp(Ω)
as Pζ(Ω) =

∫ +∞
−∞ e−iΩτCζ(τ)dτ and Pp(Ω) =∫ +∞

−∞ e−iΩτCp(τ)dτ . Using the power spectra Pζ(Ω)
and Pp(Ω), we can rewrite Eq. (14) to Eq. (17).

Dζp =
∫ +∞

−∞
Pζ(Ω)Pp(Ω)dΩ. (17)

The Fourier representation as in Eq. (17) is useful, be-
cause Pζ(Ω) can be easily estimated as we will discuss
in section 2.5. In this paper, we call Pζ(Ω) a phase
sensitivity spectrum.
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2.4. Effective phase equation

Substituting Eqs. (9) and (16) into Eq. (2), we
can obtain the following phase equation for strongly
fluctuating oscillators.

φ̇ = ω̂ + σζ̂(φ)p(t) + η(t), (18)

where η(t) is Gaussian white noise defined as η(t) =
ηω(t) + σηζp(t) and satisfies 〈η(t)〉t = 0 and
〈η(t)η(t − τ)〉t = (Dω + σ2Dζp)δ(τ) = (Dω +
σ2

∫ ∞
−∞ Pζ(Ω)Pp(Ω)dΩ)δ(τ). Eq. (18) is a closed-form

equation of the phase φ. Thus, it is easy to analyze
the dynamics and statistical properties of Eq. (18).

In this paper, we call Eq. (18) an effective phase
equation. Using Eq. (18), we can characterize the dy-
namics of a strongly fluctuating oscillator only by a
natural frequency ω̂, a phase sensitivity ζ̂(φ), a nat-
ural diffusion coefficient Dω and a phase sensitivity
spectrum Pζ(Ω). This simple equation would be a
strong tool to investigate synchronization phenomena
of chaotic oscillators.

2.5. Estimation of a phase sensitivity spectrum

We define a diffusion coefficient of the phase φ, Dφ,
as follows:

Dφ =
∫ +∞

−∞

〈
[φ(s) − 〈φ(t)〉t]

×[φ(s− u) − 〈φ(t)〉t]
〉

s
du. (19)

We further define the Fourier expansion of a phase
sensitivity ζ̂(φ) as follows:

ζ̂(φ) =
+∞∑

l=−∞

ζ̂le
ilφ, (20)

where ζ̂l (l = −∞, . . . ,∞) are Fourier coefficients of
ζ̂(φ). If we assume that p(t) is a colored noise that has
a power spectrum Pp(Ω), as discussed in Ref. [12], we
can obtain the diffusion coefficient Dφ as follows:

Dφ = Dω + σ2

∫ +∞

−∞
Pζ(Ω)Pp(Ω)dΩ

+σ2
+∞∑

l=−∞

|ζ̂l|2Pp(lω̂). (21)

Here, we assume that Pp(t) = Pex(Ω; γ, ω0), where
Pex(Ω; γ, ω0) = (γ2/2){1/[γ2 + (Ω + ω0)2] + 1/[γ2 +
(Ω − ω0)2]} and γ and ω0 are parameters. This type
of colored noise can be easily generated [12]. If γ is
sufficiently small (γ → 0), we have Pex(Ω; γ, ω0) →
(πγ/2)[δ(Ω+ω0)+δ(Ω−ω0)]. Thus, if we can measure
Dφ of a chaotic oscillator subject to colored noise p(t)

by experiments, we can estimate a phase sensitivity
spectrum Pζ(Ω) only from Dφ, Dω and ζ̂(φ) as follows:

Pζ(ω0) ' 1
σ2πγ

[
Dφ −Dω

−σ2
+∞∑

l=−∞

|ζ̂l|2Pex(lω̂; γ, ω0)
]
, (22)

where the diffusion coefficientsDφ andDω can be mea-
sured by experiments [12].

3. Noise-Induced Phase Synchronization

To demonstrate how our theory works well, we ap-
plied the theory to the noise-induced synchronization
of chaotic oscillators. We consider an ensemble of N
identical chaotic oscillators described by

Ẋi = F (Xi) + G(Xi)[p(t) + qi(t)], (23)

for i = 1, . . . , N , where Xi is the state of the i-th
oscillator, p(t) is common noise, and qi(t) is indepen-
dent noise. For simplicity, we assume that 〈p(t)〉t =
〈qi(t)〉t = 0, 〈p(t)qi(t − τ)〉t = 0, 〈qi(t)qj(t − τ)〉t = 0
(i 6= j), and qi(t) (i = 1, . . . , N) have the same statisti-
cal property characterized by a power spectrum Pq(Ω).
By the effective phase description, we can reduce Eq.
(23) to the following effective phase equation:

φ̇i = ω̂ + ζ̂(φ)[p(t) + qi(t)] + η(t), (24)

for i = 1, . . . , N , where φi is the phase of the i-th
oscillator.

Here, we focus on the two-body problem of φ1 and
φ2, and define a phase difference θ as θ = φ1 − φ2.
By discussing the dynamics of the phase difference θ,
we can analytically explore the statistical property of
synchronization phenomena without loss of generality.
As demonstrated in Ref. [13], we can obtain the prob-
ability density function of the phase difference θ, f(θ),
as follows:

f(θ) =
c

g(0) − g(θ) + h(0) +Dη
, (25)

where c is a normalization constant, g(θ) and h(θ) are
correlation functions defined as

g(θ) =
+∞∑

l=−∞

|ζ̂l|2Pp(lω̂)eilω̂, (26)

h(θ) =
+∞∑

l=−∞

|ζ̂l|2Pq(lω̂)eilω̂, (27)

and Dη is a diffusion coefficient defined as

Dη = Dω +
∫ +∞

−∞
Pζ(Ω)Pp(Ω)dΩ. (28)
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Let us note that our theory is valid under the con-
dition that a perturbation is sufficiently weak (σ � 1)
so that ηζ(t) of each oscillator can be assumed to be
independent.

4. Summary and Discussions

In this paper, we introduced a new type of phase
description. Using our theory, we can obtain a closed-
form equation of the phase, which we call an effective
phase equation. An effective phase equation describes
the long-time dynamics of a strongly fluctuating oscil-
lator such as a chaotic oscillator. The effective phase
equation is characterized only by two constants and
two functions, that is, a natural frequency ω̂, a nat-
ural diffusion coefficient Dω, a phase sensitivity ζ̂(φ)
and a phase sensitivity spectrum Pζ(Ω). Thus, we can
possibly apply this equation to various phenomena in
the real world.

Using the effective phase description, we discussed
the noise-induced phase synchronization of strongly
fluctuating oscillators. We derived the probability
density function of phase differences between oscilla-
tors, which enables us to explore statistical properties
of various synchronization phenomena. Recently, the
noise-induced synchronization of chaotic oscillators is
applied to engineering problems such as secure key dis-
tribution [14]. Thus, our theory would be useful for a
wide range of purposes from mathematical modelings
to engineering applications.

In the real world, various biological and chemical os-
cillations are described as limit cycle oscillators. How-
ever, we cannot directly apply the conventional phase
description to these oscillators, because they are sub-
ject to sufficiently large noise, which is inevitable in
real-world environments. Our theory is a possible an-
alytical tool to explore such stochastic oscillation phe-
nomena. In particular, one of the possible future work
is to apply the theory to neuroscience. To achieve
this goal, we have to develop an effective estimation
method of a phase sensitivity spectrum ζ̂(φ).
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